<< Chapter < Page Chapter >> Page >

Do the graphs of all direct variation equations look like [link] ?

No. Direct variation equations are power functions—they may be linear, quadratic, cubic, quartic, radical, etc. But all of the graphs pass through ( 0,0 ) .

The quantity y varies directly with the square of x . If y = 24 when x = 3 , find y when x is 4.

128 3

Got questions? Get instant answers now!

Solving inverse variation problems

Water temperature in an ocean varies inversely to the water’s depth. The formula T = 14,000 d gives us the temperature in degrees Fahrenheit at a depth in feet below Earth’s surface. Consider the Atlantic Ocean, which covers 22% of Earth’s surface. At a certain location, at the depth of 500 feet, the temperature may be 28°F.

If we create [link] , we observe that, as the depth increases, the water temperature decreases.

d , depth T = 14,000 d Interpretation
500 ft 14,000 500 = 28 At a depth of 500 ft, the water temperature is 28° F.
1000 ft 14,000 1000 = 14 At a depth of 1,000 ft, the water temperature is 14° F.
2000 ft 14,000 2000 = 7 At a depth of 2,000 ft, the water temperature is 7° F.

We notice in the relationship between these variables that, as one quantity increases, the other decreases. The two quantities are said to be inversely proportional and each term varies inversely with the other. Inversely proportional relationships are also called inverse variations .

For our example, [link] depicts the inverse variation    . We say the water temperature varies inversely with the depth of the water because, as the depth increases, the temperature decreases. The formula y = k x for inverse variation in this case uses k = 14,000.

Graph of y=(14000)/x where the horizontal axis is labeled, “Depth, d (ft)”, and the vertical axis is labeled, “Temperature, T (Degrees Fahrenheit)”.

Inverse variation

If x and y are related by an equation of the form

y = k x n

where k is a nonzero constant, then we say that y varies inversely    with the n th power of x . In inversely proportional    relationships, or inverse variations , there is a constant multiple k = x n y .

Writing a formula for an inversely proportional relationship

A tourist plans to drive 100 miles. Find a formula for the time the trip will take as a function of the speed the tourist drives.

Recall that multiplying speed by time gives distance. If we let t represent the drive time in hours, and v represent the velocity (speed or rate) at which the tourist drives, then v t = distance . Because the distance is fixed at 100 miles, v t = 100 so t = 100/ v . Because time is a function of velocity, we can write t ( v ) .

t ( v ) = 100 v = 100 v −1

We can see that the constant of variation is 100 and, although we can write the relationship using the negative exponent, it is more common to see it written as a fraction. We say that time varies inversely with velocity.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Given a description of an indirect variation problem, solve for an unknown.

  1. Identify the input, x , and the output, y .
  2. Determine the constant of variation. You may need to multiply y by the specified power of x to determine the constant of variation.
  3. Use the constant of variation to write an equation for the relationship.
  4. Substitute known values into the equation to find the unknown.

Solving an inverse variation problem

A quantity y varies inversely with the cube of x . If y = 25 when x = 2 , find y when x is 6.

The general formula for inverse variation with a cube is y = k x 3 . The constant can be found by multiplying y by the cube of x .

k = x 3 y = 2 3 25 = 200

Now we use the constant to write an equation that represents this relationship.

y = k x 3 , k = 200 y = 200 x 3

Substitute x = 6 and solve for y .

y = 200 6 3 = 25 27
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

dinesh Reply
Cos 45 = 1/ √ 2 sec 30 = 2/√3 cosec 30 = 2. =1/√2 / 2/√3+2 =1/√2/2+2√3/√3 =1/√2*√3/2+2√3 =√3/√2(2+2√3) =√3/2√2+2√6 --------- (1) =√3 (2√6-2√2)/((2√6)+2√2))(2√6-2√2) =2√3(√6-√2)/(2√6)²-(2√2)² =2√3(√6-√2)/24-8 =2√3(√6-√2)/16 =√18-√16/8 =3√2-√6/8 ----------(2)
exercise 1.2 solution b....isnt it lacking
Miiro Reply
I dnt get dis work well
john Reply
what is one-to-one function
Iwori Reply
what is the procedure in solving quadratic equetion at least 6?
Qhadz Reply
Almighty formula or by factorization...or by graphical analysis
I need to learn this trigonometry from A level.. can anyone help here?
wisdom Reply
yes am hia
tanh2x =2tanhx/1+tanh^2x
Gautam Reply
cos(a+b)+cos(a-b)/sin(a+b)-sin(a-b)=cotb ... pls some one should help me with this..thanks in anticipation
favour Reply
f(x)=x/x+2 given g(x)=1+2x/1-x show that gf(x)=1+2x/3
Ken Reply
sebd me some questions about anything ill solve for yall
Manifoldee Reply
cos(a+b)+cos(a-b)/sin(a+b)-sin(a-b)= cotb
how to solve x²=2x+8 factorization?
Kristof Reply
x=2x+8 x-2x=2x+8-2x x-2x=8 -x=8 -x/-1=8/-1 x=-8 prove: if x=-8 -8=2(-8)+8 -8=-16+8 -8=-8 (PROVEN)
×=2x-8 minus both sides by 2x
so, x-2x=2x+8-2x
then cancel out 2x and -2x, cuz 2x-2x is obviously zero
so it would be like this: x-2x=8
then we all know that beside the variable is a number (1): (1)x-2x=8
so we will going to minus that 1-2=-1
so it would be -x=8
so next step is to cancel out negative number beside x so we get positive x
so by doing it you need to divide both side by -1 so it would be like this: (-1x/-1)=(8/-1)
so -1/-1=1
so x=-8
so we should prove it
x=2x+8 x-2x=8 -x=8 x=-8 by mantu from India
lol i just saw its x²
x²=2x-8 x²-2x=8 -x²=8 x²=-8 square root(x²)=square root(-8) x=sq. root(-8)
I mean x²=2x+8 by factorization method
I think x=-2 or x=4
x= 2x+8 ×=8-2x - 2x + x = 8 - x = 8 both sides divided - 1 -×/-1 = 8/-1 × = - 8 //// from somalia
i am in
Prashant Reply
how are you
can u tell me concepts
Find the possible value of 8.5 using moivre's theorem
Reuben Reply
which of these functions is not uniformly cintinuous on (0, 1)? sinx
Pooja Reply
which of these functions is not uniformly continuous on 0,1
Basant Reply
Practice Key Terms 7

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?