# 5.1 Quadratic functions  (Page 6/15)

 Page 6 / 15

## Rewriting quadratics in standard form

In [link] , the quadratic was easily solved by factoring. However, there are many quadratics that cannot be factored. We can solve these quadratics by first rewriting them in standard form.

Given a quadratic function, find the $\text{\hspace{0.17em}}x\text{-}$ intercepts by rewriting in standard form .

1. Substitute $\text{\hspace{0.17em}}a\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}b\text{\hspace{0.17em}}$ into $\text{\hspace{0.17em}}h=-\frac{b}{2a}.$
2. Substitute $\text{\hspace{0.17em}}x=h\text{\hspace{0.17em}}$ into the general form of the quadratic function to find $\text{\hspace{0.17em}}k.$
3. Rewrite the quadratic in standard form using $\text{\hspace{0.17em}}h\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}k.$
4. Solve for when the output of the function will be zero to find the $\text{\hspace{0.17em}}x\text{-}$ intercepts.

## Finding the x -intercepts of a parabola

Find the $\text{\hspace{0.17em}}x\text{-}$ intercepts of the quadratic function $\text{\hspace{0.17em}}f\left(x\right)=2{x}^{2}+4x-4.$

We begin by solving for when the output will be zero.

$0=2{x}^{2}+4x-4$

Because the quadratic is not easily factorable in this case, we solve for the intercepts by first rewriting the quadratic in standard form.

$f\left(x\right)=a{\left(x-h\right)}^{2}+k$

We know that $\text{\hspace{0.17em}}a=2.\text{\hspace{0.17em}}$ Then we solve for $\text{\hspace{0.17em}}h\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}k.$

$\begin{array}{cccccc}\hfill h& =& -\frac{b}{2a}\hfill & \hfill \phantom{\rule{2em}{0ex}}k& =& f\left(-1\right)\hfill \\ & =& -\frac{4}{2\left(2\right)}\hfill & & =& 2{\left(-1\right)}^{2}+4\left(-1\right)-4\hfill \\ & =& -1\hfill & & =& -6\hfill \end{array}$

So now we can rewrite in standard form.

$f\left(x\right)=2{\left(x+1\right)}^{2}-6$

We can now solve for when the output will be zero.

$\begin{array}{l}0=2{\left(x+1\right)}^{2}-6\hfill \\ 6=2{\left(x+1\right)}^{2}\hfill \\ 3={\left(x+1\right)}^{2}\hfill \\ x+1=±\sqrt{3}\hfill \\ x=-1±\sqrt{3}\hfill \end{array}$

The graph has x -intercepts at $\text{\hspace{0.17em}}\left(-1-\sqrt{3},0\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(-1+\sqrt{3},0\right).$

We can check our work by graphing the given function on a graphing utility and observing the $\text{\hspace{0.17em}}x\text{-}$ intercepts. See [link] .

In a Try It , we found the standard and general form for the function $\text{\hspace{0.17em}}g\left(x\right)=13+{x}^{2}-6x.\text{\hspace{0.17em}}$ Now find the y - and x -intercepts (if any).

y -intercept at (0, 13), No $\text{\hspace{0.17em}}x\text{-}$ intercepts

## Applying the vertex and x -intercepts of a parabola

A ball is thrown upward from the top of a 40 foot high building at a speed of 80 feet per second. The ball’s height above ground can be modeled by the equation $\text{\hspace{0.17em}}H\left(t\right)=-16{t}^{2}+80t+40.$

1. When does the ball reach the maximum height?
2. What is the maximum height of the ball?
3. When does the ball hit the ground?
1. The ball reaches the maximum height at the vertex of the parabola.
$\begin{array}{ccc}\hfill h& =& -\frac{80}{2\left(-16\right)}\hfill \\ & =& \frac{80}{32}\hfill \\ & =& \frac{5}{2}\hfill \\ & =& 2.5\hfill \end{array}$

The ball reaches a maximum height after 2.5 seconds.

2. To find the maximum height, find the $\text{\hspace{0.17em}}y\text{-}$ coordinate of the vertex of the parabola.
$\begin{array}{ccc}\hfill k& =& H\left(-\frac{b}{2a}\right)\hfill \\ & =& H\left(2.5\right)\hfill \\ & =& -16{\left(2.5\right)}^{2}+80\left(2.5\right)+40\hfill \\ & =& 140\hfill \end{array}$

The ball reaches a maximum height of 140 feet.

3. To find when the ball hits the ground, we need to determine when the height is zero, $\text{\hspace{0.17em}}H\left(t\right)=0.$

We use the quadratic formula.

$\begin{array}{ccc}\hfill t& =& \frac{-80±\sqrt{{80}^{2}-4\left(-16\right)\left(40\right)}}{2\left(-16\right)}\hfill \\ & =& \frac{-80±\sqrt{8960}}{-32}\hfill \end{array}$

Because the square root does not simplify nicely, we can use a calculator to approximate the values of the solutions.

$\begin{array}{l}\hfill \\ \hfill \\ \begin{array}{lll}t=\frac{-80-\sqrt{8960}}{-32}\approx 5.458\hfill & \text{or}\hfill & t=\frac{-80+\sqrt{8960}}{-32}\approx -0.458\hfill \end{array}\hfill \end{array}$

The second answer is outside the reasonable domain of our model, so we conclude the ball will hit the ground after about 5.458 seconds. See [link] .

Note that the graph does not represent the physical path of the ball upward and downward. Keep the quantities on each axis in mind while interpreting the graph.

A rock is thrown upward from the top of a 112-foot high cliff overlooking the ocean at a speed of 96 feet per second. The rock’s height above ocean can be modeled by the equation $\text{\hspace{0.17em}}H\left(t\right)=-16{t}^{2}+96t+112.$

1. When does the rock reach the maximum height?
2. What is the maximum height of the rock?
3. When does the rock hit the ocean?

1. 3 seconds
2. 256 feet
3. 7 seconds

#### Questions & Answers

factoring polynomial
find general solution of the Tanx=-1/root3,secx=2/root3
find general solution of the following equation
Nani
the value of 2 sin square 60 Cos 60
0.75
Lynne
0.75
Inkoom
when can I use sin, cos tan in a giving question
depending on the question
Nicholas
I am a carpenter and I have to cut and assemble a conventional roof line for a new home. The dimensions are: width 30'6" length 40'6". I want a 6 and 12 pitch. The roof is a full hip construction. Give me the L,W and height of rafters for the hip, hip jacks also the length of common jacks.
John
I want to learn the calculations
where can I get indices
I need matrices
Nasasira
hi
Raihany
Hi
Solomon
need help
Raihany
maybe provide us videos
Nasasira
Raihany
Hello
Cromwell
a
Amie
What do you mean by a
Cromwell
nothing. I accidentally press it
Amie
you guys know any app with matrices?
Khay
Ok
Cromwell
Solve the x? x=18+(24-3)=72
x-39=72 x=111
Suraj
Solve the formula for the indicated variable P=b+4a+2c, for b
Need help with this question please
b=-4ac-2c+P
Denisse
b=p-4a-2c
Suddhen
b= p - 4a - 2c
Snr
p=2(2a+C)+b
Suraj
b=p-2(2a+c)
Tapiwa
P=4a+b+2C
COLEMAN
b=P-4a-2c
COLEMAN
like Deadra, show me the step by step order of operation to alive for b
John
A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
The sequence is {1,-1,1-1.....} has
circular region of radious
how can we solve this problem
Sin(A+B) = sinBcosA+cosBsinA
Prove it
Eseka
Eseka
hi
Joel
yah
immy
June needs 45 gallons of punch. 2 different coolers. Bigger cooler is 5 times as large as smaller cooler. How many gallons in each cooler?
7.5 and 37.5
Nando
how would this look as an equation?
Hayden
5x+x=45
Khay By By By Danielrosenberger By    By Eric Crawford By Mistry Bhavesh By  By Anindyo Mukhopadhyay