# 5.8 Modeling using variation  (Page 4/14)

 Page 4 / 14

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies directly as $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and when

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies directly as the square of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and when

$y=5{x}^{2}$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies directly as the square root of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and when

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies directly as the cube of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and when $\text{\hspace{0.17em}}x=36,\text{\hspace{0.17em}}y=24.$

$y=10{x}^{3}$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies directly as the cube root of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and when

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies directly as the fourth power of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and when

$y=6{x}^{4}$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies inversely as $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and when

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies inversely as the square of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and when

$y=\frac{18}{{x}^{2}}$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies inversely as the cube of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and when

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies inversely as the fourth power of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and when

$y=\frac{81}{{x}^{4}}$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies inversely as the square root of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and when

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies inversely as the cube root of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and when

$y=\frac{20}{\sqrt[3]{x}}$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies jointly with $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z\text{\hspace{0.17em}}$ and when $\text{\hspace{0.17em}}x=2\text{\hspace{0.17em}}$ and

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies jointly as and $\text{\hspace{0.17em}}w\text{\hspace{0.17em}}$ and when then $\text{\hspace{0.17em}}y=100.$

$y=10xzw$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies jointly as the square of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and the square of $\text{\hspace{0.17em}}z\text{\hspace{0.17em}}$ and when $\text{\hspace{0.17em}}x=3\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z=4,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=72.$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies jointly as $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and the square root of $\text{\hspace{0.17em}}z\text{\hspace{0.17em}}$ and when $\text{\hspace{0.17em}}x=2\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z=25,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=100.$

$y=10x\sqrt{z}$

$\text{\hspace{0.17em}}y$ varies jointly as the square of $\text{\hspace{0.17em}}x$ the cube of $\text{\hspace{0.17em}}z$ and the square root of $\text{\hspace{0.17em}}W.\text{\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=1,z=2,\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}w=36,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=48.$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies jointly as and inversely as $\text{\hspace{0.17em}}w.\text{\hspace{0.17em}}$ When and $\text{\hspace{0.17em}}w=6,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=10.$

$y=4\frac{xz}{w}$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies jointly as the square of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and the square root of $\text{\hspace{0.17em}}z\text{\hspace{0.17em}}$ and inversely as the cube of $\text{\hspace{0.17em}}w\text{.\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=3,z=4,\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}w=3,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=6.$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies jointly as $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z\text{\hspace{0.17em}}$ and inversely as the square root of $\text{\hspace{0.17em}}w\text{\hspace{0.17em}}$ and the square of $\text{\hspace{0.17em}}t\text{\hspace{0.17em}.}$ When $\text{\hspace{0.17em}}x=3,z=1,w=25,\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}t=2,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=6.$

$y=40\frac{xz}{\sqrt{w}{t}^{2}}$

## Numeric

For the following exercises, use the given information to find the unknown value.

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies directly as $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=3,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=12.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ wneh $\text{\hspace{0.17em}}x=20.$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies directly as the square of $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=2,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=16.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $x=8.$

$y=256$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies directly as the cube of $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=3,\text{\hspace{0.17em}}$ then Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=4.$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies directly as the square root of $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=16,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=4.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=36.$

$y=6$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies directly as the cube root of $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=125,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=15.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=1,000.$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies inversely with $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=3,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=2.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=1.$

$y=6$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies inversely with the square of $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=4,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=3.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=2.$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies inversely with the cube of $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=3,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=1.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=1.$

$y=27$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies inversely with the square root of $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=64,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=12.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=36.$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies inversely with the cube root of $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=27,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=5.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=125.$

$y=3$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies jointly as When $\text{\hspace{0.17em}}x=4\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z=2,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=16.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=3\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z=3.$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies jointly as When $\text{\hspace{0.17em}}x=2,\text{\hspace{0.17em}}$ $z=1,\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}w=12,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=72.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=1,\text{\hspace{0.17em}}$ $z=2,\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}w=3.$

$y=18$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies jointly as $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and the square of $\text{\hspace{0.17em}}\mathrm{z.}\text{\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=2\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z=4,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=144.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=4\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z=5.$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies jointly as the square of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and the square root of $\text{\hspace{0.17em}}z.\text{\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=2\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z=9,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=24.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=3\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z=25.$

$y=90$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies jointly as $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z\text{\hspace{0.17em}}$ and inversely as $\text{\hspace{0.17em}}w.\text{\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=5,\text{\hspace{0.17em}}$ and then $y=4.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=3\text{\hspace{0.17em}}$ and and

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies jointly as the square of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and the cube of $\text{\hspace{0.17em}}z\text{\hspace{0.17em}}$ and inversely as the square root of $\text{\hspace{0.17em}}w\text{.\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=2,\text{\hspace{0.17em}}$ $z=2,\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}w=64,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=12.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=1,\text{\hspace{0.17em}}$ $z=3,\text{\hspace{0.17em}}$ and

$y=\frac{81}{2}$

(1+cosA+IsinA)(1+cosB+isinB)/(cos@+isin@)(cos$+isin$)
hatdog
Mark
how we can draw three triangles of distinctly different shapes. All the angles will be cutt off each triangle and placed side by side with vertices touching
bsc F. y algebra and trigonometry pepper 2
given that x= 3/5 find sin 3x
4
DB
remove any signs and collect terms of -2(8a-3b-c)
-16a+6b+2c
Will
Joeval
(x2-2x+8)-4(x2-3x+5)
sorry
Miranda
x²-2x+9-4x²+12x-20 -3x²+10x+11
Miranda
x²-2x+9-4x²+12x-20 -3x²+10x+11
Miranda
(X2-2X+8)-4(X2-3X+5)=0 ?
master
The anwser is imaginary number if you want to know The anwser of the expression you must arrange The expression and use quadratic formula To find the answer
master
The anwser is imaginary number if you want to know The anwser of the expression you must arrange The expression and use quadratic formula To find the answer
master
Y
master
master
Soo sorry (5±Root11* i)/3
master
Mukhtar
2x²-6x+1=0
Ife
explain and give four example of hyperbolic function
What is the correct rational algebraic expression of the given "a fraction whose denominator is 10 more than the numerator y?
y/y+10
Mr
Find nth derivative of eax sin (bx + c).
Find area common to the parabola y2 = 4ax and x2 = 4ay.
Anurag
y2=4ax= y=4ax/2. y=2ax
akash
A rectangular garden is 25ft wide. if its area is 1125ft, what is the length of the garden
to find the length I divide the area by the wide wich means 1125ft/25ft=45
Miranda
thanks
Jhovie
What do you call a relation where each element in the domain is related to only one value in the range by some rules?
A banana.
Yaona
given 4cot thither +3=0and 0°<thither <180° use a sketch to determine the value of the following a)cos thither
what are you up to?
nothing up todat yet
Miranda
hi
jai
hello
jai
Miranda Drice
jai
aap konsi country se ho
jai
which language is that
Miranda
I am living in india
jai
good
Miranda
what is the formula for calculating algebraic
I think the formula for calculating algebraic is the statement of the equality of two expression stimulate by a set of addition, multiplication, soustraction, division, raising to a power and extraction of Root. U believe by having those in the equation you will be in measure to calculate it
Miranda
state and prove Cayley hamilton therom
hello
Propessor
hi
Miranda
the Cayley hamilton Theorem state if A is a square matrix and if f(x) is its characterics polynomial then f(x)=0 in another ways evey square matrix is a root of its chatacteristics polynomial.
Miranda
hi
jai
hi Miranda
jai
thanks
Propessor
welcome
jai