# 9.2 Sum and difference identities  (Page 5/6)

 Page 5 / 6

Verify the identity: $\text{\hspace{0.17em}}\mathrm{tan}\left(\pi -\theta \right)=-\mathrm{tan}\text{\hspace{0.17em}}\theta .$

$\begin{array}{ccc}\hfill \mathrm{tan}\left(\pi -\theta \right)& =& \frac{\mathrm{tan}\left(\pi \right)-\mathrm{tan}\text{\hspace{0.17em}}\theta }{1+\mathrm{tan}\left(\pi \right)\mathrm{tan}\theta }\hfill \\ & =& \frac{0-\mathrm{tan}\text{\hspace{0.17em}}\theta }{1+0\cdot \mathrm{tan}\text{\hspace{0.17em}}\theta }\hfill \\ & =& -\mathrm{tan}\text{\hspace{0.17em}}\theta \hfill \end{array}$

## Using sum and difference formulas to solve an application problem

Let $\text{\hspace{0.17em}}{L}_{1}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}{L}_{2}\text{\hspace{0.17em}}$ denote two non-vertical intersecting lines, and let $\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ denote the acute angle between $\text{\hspace{0.17em}}{L}_{1}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}{L}_{2}.\text{\hspace{0.17em}}$ See [link] . Show that

$\mathrm{tan}\text{\hspace{0.17em}}\theta =\frac{{m}_{2}-{m}_{1}}{1+{m}_{1}{m}_{2}}$

where $\text{\hspace{0.17em}}{m}_{1}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}{m}_{2}\text{\hspace{0.17em}}$ are the slopes of $\text{\hspace{0.17em}}{L}_{1}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}{L}_{2}\text{\hspace{0.17em}}$ respectively. ( Hint: Use the fact that $\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}{\theta }_{1}={m}_{1}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}{\theta }_{2}={m}_{2}.$ )

Using the difference formula for tangent, this problem does not seem as daunting as it might.

$\begin{array}{ccc}\hfill \mathrm{tan}\text{\hspace{0.17em}}\theta & =& \mathrm{tan}\left({\theta }_{2}-{\theta }_{1}\right)\hfill \\ & =& \frac{\mathrm{tan}\text{\hspace{0.17em}}{\theta }_{2}-\mathrm{tan}\text{\hspace{0.17em}}{\theta }_{1}}{1+\mathrm{tan}\text{\hspace{0.17em}}{\theta }_{1}\mathrm{tan}\text{\hspace{0.17em}}{\theta }_{2}}\hfill \\ & =& \frac{{m}_{2}-{m}_{1}}{1+{m}_{1}{m}_{2}}\hfill \end{array}$

## Investigating a guy-wire problem

For a climbing wall, a guy-wire $\text{\hspace{0.17em}}R\text{\hspace{0.17em}}$ is attached 47 feet high on a vertical pole. Added support is provided by another guy-wire $\text{\hspace{0.17em}}S\text{\hspace{0.17em}}$ attached 40 feet above ground on the same pole. If the wires are attached to the ground 50 feet from the pole, find the angle $\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}$ between the wires. See [link] .

Let’s first summarize the information we can gather from the diagram. As only the sides adjacent to the right angle are known, we can use the tangent function. Notice that $\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\beta =\frac{47}{50},$ and $\text{\hspace{0.17em}}\mathrm{tan}\left(\beta -\alpha \right)=\frac{40}{50}=\frac{4}{5}.\text{\hspace{0.17em}}$ We can then use difference formula for tangent.

$\mathrm{tan}\left(\beta -\alpha \right)=\frac{\mathrm{tan}\text{\hspace{0.17em}}\beta -\mathrm{tan}\text{\hspace{0.17em}}\alpha }{1+\mathrm{tan}\text{\hspace{0.17em}}\beta \mathrm{tan}\text{\hspace{0.17em}}\alpha }$

Now, substituting the values we know into the formula, we have

$\begin{array}{ccc}\hfill \frac{4}{5}& =& \frac{\frac{47}{50}-\mathrm{tan}\text{\hspace{0.17em}}\alpha }{1+\frac{47}{50}\mathrm{tan}\text{\hspace{0.17em}}\alpha }\hfill \\ \hfill 4\left(1+\frac{47}{50}\mathrm{tan}\text{\hspace{0.17em}}\alpha \right)& =& 5\left(\frac{47}{50}-\mathrm{tan}\text{\hspace{0.17em}}\alpha \right)\hfill \end{array}$

Use the distributive property, and then simplify the functions.

$\begin{array}{ccc}\hfill 4\left(1\right)+4\left(\frac{47}{50}\right)\mathrm{tan}\text{\hspace{0.17em}}\alpha & =& 5\left(\frac{47}{50}\right)-5\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\alpha \hfill \\ \hfill 4+3.76\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\alpha & =& 4.7-5\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\alpha \hfill \\ \hfill 5\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\alpha +3.76\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\alpha & =& 0.7\hfill \\ \hfill 8.76\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\alpha & =& 0.7\hfill \\ \hfill \mathrm{tan}\text{\hspace{0.17em}}\alpha & \approx & 0.07991\hfill \\ \hfill {\mathrm{tan}}^{-1}\left(0.07991\right)& \approx & .079741\hfill \end{array}$

Now we can calculate the angle in degrees.

$\alpha \approx 0.079741\left(\frac{180}{\pi }\right)\approx 4.57°$

Access these online resources for additional instruction and practice with sum and difference identities.

## Key equations

 Sum Formula for Cosine $\mathrm{cos}\left(\alpha +\beta \right)=\mathrm{cos}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\beta -\mathrm{sin}\text{\hspace{0.17em}}\alpha \mathrm{sin}\text{\hspace{0.17em}}\beta$ Difference Formula for Cosine $\mathrm{cos}\left(\alpha -\beta \right)=\mathrm{cos}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\beta +\mathrm{sin}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\beta$ Sum Formula for Sine $\mathrm{sin}\left(\alpha +\beta \right)=\mathrm{sin}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\beta +\mathrm{cos}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\beta$ Difference Formula for Sine $\mathrm{sin}\left(\alpha -\beta \right)=\mathrm{sin}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\beta -\mathrm{cos}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\beta$ Sum Formula for Tangent $\mathrm{tan}\left(\alpha +\beta \right)=\frac{\mathrm{tan}\text{\hspace{0.17em}}\alpha +\mathrm{tan}\text{\hspace{0.17em}}\beta }{1-\mathrm{tan}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\beta }$ Difference Formula for Tangent $\mathrm{tan}\left(\alpha -\beta \right)=\frac{\mathrm{tan}\text{\hspace{0.17em}}\alpha -\mathrm{tan}\text{\hspace{0.17em}}\beta }{1+\mathrm{tan}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\beta }$ Cofunction identities $\begin{array}{ccc}\hfill \mathrm{sin}\text{\hspace{0.17em}}\theta & =& \mathrm{cos}\left(\frac{\pi }{2}-\theta \right)\hfill \\ \hfill \mathrm{cos}\text{\hspace{0.17em}}\theta & =& \mathrm{sin}\left(\frac{\pi }{2}-\theta \right)\hfill \\ \hfill \mathrm{tan}\text{\hspace{0.17em}}\theta & =& \mathrm{cot}\left(\frac{\pi }{2}-\theta \right)\hfill \\ \hfill \mathrm{cot}\text{\hspace{0.17em}}\theta & =& \mathrm{tan}\left(\frac{\pi }{2}-\theta \right)\hfill \\ \hfill \mathrm{sec}\text{\hspace{0.17em}}\theta & =& \mathrm{csc}\left(\frac{\pi }{2}-\theta \right)\hfill \\ \hfill \mathrm{csc}\text{\hspace{0.17em}}\theta & =& \mathrm{sec}\left(\frac{\pi }{2}-\theta \right)\hfill \end{array}$

## Key concepts

• The sum formula for cosines states that the cosine of the sum of two angles equals the product of the cosines of the angles minus the product of the sines of the angles. The difference formula for cosines states that the cosine of the difference of two angles equals the product of the cosines of the angles plus the product of the sines of the angles.
• The sum and difference formulas can be used to find the exact values of the sine, cosine, or tangent of an angle. See [link] and [link] .
• The sum formula for sines states that the sine of the sum of two angles equals the product of the sine of the first angle and cosine of the second angle plus the product of the cosine of the first angle and the sine of the second angle. The difference formula for sines states that the sine of the difference of two angles equals the product of the sine of the first angle and cosine of the second angle minus the product of the cosine of the first angle and the sine of the second angle. See [link] .
• The sum and difference formulas for sine and cosine can also be used for inverse trigonometric functions. See [link] .
• The sum formula for tangent states that the tangent of the sum of two angles equals the sum of the tangents of the angles divided by 1 minus the product of the tangents of the angles. The difference formula for tangent states that the tangent of the difference of two angles equals the difference of the tangents of the angles divided by 1 plus the product of the tangents of the angles. See [link] .
• The Pythagorean Theorem along with the sum and difference formulas can be used to find multiple sums and differences of angles. See [link] .
• The cofunction identities apply to complementary angles and pairs of reciprocal functions. See [link] .
• Sum and difference formulas are useful in verifying identities. See [link] and [link] .
• Application problems are often easier to solve by using sum and difference formulas. See [link] and [link] .

(x2-2x+8)-4(x2-3x+5)
sorry
Miranda
x²-2x+9-4x²+12x-20 -3x²+10x+11
Miranda
x²-2x+9-4x²+12x-20 -3x²+10x+11
Miranda
(X2-2X+8)-4(X2-3X+5)=0 ?
master
The anwser is imaginary number if you want to know The anwser of the expression you must arrange The expression and use quadratic formula To find the answer
master
The anwser is imaginary number if you want to know The anwser of the expression you must arrange The expression and use quadratic formula To find the answer
master
Y
master
master
Soo sorry (5±Root11* i)/3
master
Mukhtar
explain and give four example of hyperbolic function
What is the correct rational algebraic expression of the given "a fraction whose denominator is 10 more than the numerator y?
y/y+10
Mr
Find nth derivative of eax sin (bx + c).
Find area common to the parabola y2 = 4ax and x2 = 4ay.
Anurag
A rectangular garden is 25ft wide. if its area is 1125ft, what is the length of the garden
to find the length I divide the area by the wide wich means 1125ft/25ft=45
Miranda
thanks
Jhovie
What do you call a relation where each element in the domain is related to only one value in the range by some rules?
A banana.
Yaona
given 4cot thither +3=0and 0°<thither <180° use a sketch to determine the value of the following a)cos thither
what are you up to?
nothing up todat yet
Miranda
hi
jai
hello
jai
Miranda Drice
jai
aap konsi country se ho
jai
which language is that
Miranda
I am living in india
jai
good
Miranda
what is the formula for calculating algebraic
I think the formula for calculating algebraic is the statement of the equality of two expression stimulate by a set of addition, multiplication, soustraction, division, raising to a power and extraction of Root. U believe by having those in the equation you will be in measure to calculate it
Miranda
state and prove Cayley hamilton therom
hello
Propessor
hi
Miranda
the Cayley hamilton Theorem state if A is a square matrix and if f(x) is its characterics polynomial then f(x)=0 in another ways evey square matrix is a root of its chatacteristics polynomial.
Miranda
hi
jai
hi Miranda
jai
thanks
Propessor
welcome
jai
What is algebra
algebra is a branch of the mathematics to calculate expressions follow.
Miranda
Miranda Drice would you mind teaching me mathematics? I think you are really good at math. I'm not good at it. In fact I hate it. 😅😅😅
Jeffrey
lolll who told you I'm good at it
Miranda
something seems to wispher me to my ear that u are good at it. lol
Jeffrey
lolllll if you say so
Miranda
but seriously, Im really bad at math. And I hate it. But you see, I downloaded this app two months ago hoping to master it.
Jeffrey
which grade are you in though
Miranda
oh woww I understand
Miranda
Jeffrey
Jeffrey
Miranda
how come you finished in college and you don't like math though
Miranda
gotta practice, holmie
Steve
if you never use it you won't be able to appreciate it
Steve
I don't know why. But Im trying to like it.
Jeffrey
yes steve. you're right
Jeffrey
so you better
Miranda
what is the solution of the given equation?
which equation
Miranda
I dont know. lol
Jeffrey
Miranda
Jeffrey
answer and questions in exercise 11.2 sums
how do u calculate inequality of irrational number?
Alaba
give me an example
Chris
and I will walk you through it
Chris
cos (-z)= cos z .
cos(- z)=cos z
Mustafa
what is a algebra
(x+x)3=?
6x
Obed
what is the identity of 1-cos²5x equal to?
__john __05
Kishu
Hi
Abdel
hi
Ye
hi
Nokwanda
C'est comment
Abdel
Hi
Amanda
hello
SORIE
Hiiii
Chinni
hello
Ranjay
hi
ANSHU
hiiii
Chinni
h r u friends
Chinni
yes
Hassan
so is their any Genius in mathematics here let chat guys and get to know each other's
SORIE
I speak French
Abdel
okay no problem since we gather here and get to know each other
SORIE
hi im stupid at math and just wanna join here
Yaona
lol nahhh none of us here are stupid it's just that we have Fast, Medium, and slow learner bro but we all going to work things out together
SORIE
it's 12