# 9.2 Sum and difference identities  (Page 5/6)

 Page 5 / 6

Verify the identity: $\text{\hspace{0.17em}}\mathrm{tan}\left(\pi -\theta \right)=-\mathrm{tan}\text{\hspace{0.17em}}\theta .$

$\begin{array}{ccc}\hfill \mathrm{tan}\left(\pi -\theta \right)& =& \frac{\mathrm{tan}\left(\pi \right)-\mathrm{tan}\text{\hspace{0.17em}}\theta }{1+\mathrm{tan}\left(\pi \right)\mathrm{tan}\theta }\hfill \\ & =& \frac{0-\mathrm{tan}\text{\hspace{0.17em}}\theta }{1+0\cdot \mathrm{tan}\text{\hspace{0.17em}}\theta }\hfill \\ & =& -\mathrm{tan}\text{\hspace{0.17em}}\theta \hfill \end{array}$

## Using sum and difference formulas to solve an application problem

Let $\text{\hspace{0.17em}}{L}_{1}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}{L}_{2}\text{\hspace{0.17em}}$ denote two non-vertical intersecting lines, and let $\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ denote the acute angle between $\text{\hspace{0.17em}}{L}_{1}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}{L}_{2}.\text{\hspace{0.17em}}$ See [link] . Show that

$\mathrm{tan}\text{\hspace{0.17em}}\theta =\frac{{m}_{2}-{m}_{1}}{1+{m}_{1}{m}_{2}}$

where $\text{\hspace{0.17em}}{m}_{1}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}{m}_{2}\text{\hspace{0.17em}}$ are the slopes of $\text{\hspace{0.17em}}{L}_{1}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}{L}_{2}\text{\hspace{0.17em}}$ respectively. ( Hint: Use the fact that $\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}{\theta }_{1}={m}_{1}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}{\theta }_{2}={m}_{2}.$ )

Using the difference formula for tangent, this problem does not seem as daunting as it might.

$\begin{array}{ccc}\hfill \mathrm{tan}\text{\hspace{0.17em}}\theta & =& \mathrm{tan}\left({\theta }_{2}-{\theta }_{1}\right)\hfill \\ & =& \frac{\mathrm{tan}\text{\hspace{0.17em}}{\theta }_{2}-\mathrm{tan}\text{\hspace{0.17em}}{\theta }_{1}}{1+\mathrm{tan}\text{\hspace{0.17em}}{\theta }_{1}\mathrm{tan}\text{\hspace{0.17em}}{\theta }_{2}}\hfill \\ & =& \frac{{m}_{2}-{m}_{1}}{1+{m}_{1}{m}_{2}}\hfill \end{array}$

## Investigating a guy-wire problem

For a climbing wall, a guy-wire $\text{\hspace{0.17em}}R\text{\hspace{0.17em}}$ is attached 47 feet high on a vertical pole. Added support is provided by another guy-wire $\text{\hspace{0.17em}}S\text{\hspace{0.17em}}$ attached 40 feet above ground on the same pole. If the wires are attached to the ground 50 feet from the pole, find the angle $\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}$ between the wires. See [link] .

Let’s first summarize the information we can gather from the diagram. As only the sides adjacent to the right angle are known, we can use the tangent function. Notice that $\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\beta =\frac{47}{50},$ and $\text{\hspace{0.17em}}\mathrm{tan}\left(\beta -\alpha \right)=\frac{40}{50}=\frac{4}{5}.\text{\hspace{0.17em}}$ We can then use difference formula for tangent.

$\mathrm{tan}\left(\beta -\alpha \right)=\frac{\mathrm{tan}\text{\hspace{0.17em}}\beta -\mathrm{tan}\text{\hspace{0.17em}}\alpha }{1+\mathrm{tan}\text{\hspace{0.17em}}\beta \mathrm{tan}\text{\hspace{0.17em}}\alpha }$

Now, substituting the values we know into the formula, we have

$\begin{array}{ccc}\hfill \frac{4}{5}& =& \frac{\frac{47}{50}-\mathrm{tan}\text{\hspace{0.17em}}\alpha }{1+\frac{47}{50}\mathrm{tan}\text{\hspace{0.17em}}\alpha }\hfill \\ \hfill 4\left(1+\frac{47}{50}\mathrm{tan}\text{\hspace{0.17em}}\alpha \right)& =& 5\left(\frac{47}{50}-\mathrm{tan}\text{\hspace{0.17em}}\alpha \right)\hfill \end{array}$

Use the distributive property, and then simplify the functions.

$\begin{array}{ccc}\hfill 4\left(1\right)+4\left(\frac{47}{50}\right)\mathrm{tan}\text{\hspace{0.17em}}\alpha & =& 5\left(\frac{47}{50}\right)-5\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\alpha \hfill \\ \hfill 4+3.76\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\alpha & =& 4.7-5\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\alpha \hfill \\ \hfill 5\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\alpha +3.76\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\alpha & =& 0.7\hfill \\ \hfill 8.76\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\alpha & =& 0.7\hfill \\ \hfill \mathrm{tan}\text{\hspace{0.17em}}\alpha & \approx & 0.07991\hfill \\ \hfill {\mathrm{tan}}^{-1}\left(0.07991\right)& \approx & .079741\hfill \end{array}$

Now we can calculate the angle in degrees.

$\alpha \approx 0.079741\left(\frac{180}{\pi }\right)\approx 4.57°$

Access these online resources for additional instruction and practice with sum and difference identities.

## Key equations

 Sum Formula for Cosine $\mathrm{cos}\left(\alpha +\beta \right)=\mathrm{cos}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\beta -\mathrm{sin}\text{\hspace{0.17em}}\alpha \mathrm{sin}\text{\hspace{0.17em}}\beta$ Difference Formula for Cosine $\mathrm{cos}\left(\alpha -\beta \right)=\mathrm{cos}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\beta +\mathrm{sin}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\beta$ Sum Formula for Sine $\mathrm{sin}\left(\alpha +\beta \right)=\mathrm{sin}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\beta +\mathrm{cos}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\beta$ Difference Formula for Sine $\mathrm{sin}\left(\alpha -\beta \right)=\mathrm{sin}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\beta -\mathrm{cos}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\beta$ Sum Formula for Tangent $\mathrm{tan}\left(\alpha +\beta \right)=\frac{\mathrm{tan}\text{\hspace{0.17em}}\alpha +\mathrm{tan}\text{\hspace{0.17em}}\beta }{1-\mathrm{tan}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\beta }$ Difference Formula for Tangent $\mathrm{tan}\left(\alpha -\beta \right)=\frac{\mathrm{tan}\text{\hspace{0.17em}}\alpha -\mathrm{tan}\text{\hspace{0.17em}}\beta }{1+\mathrm{tan}\text{\hspace{0.17em}}\alpha \text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}\beta }$ Cofunction identities $\begin{array}{ccc}\hfill \mathrm{sin}\text{\hspace{0.17em}}\theta & =& \mathrm{cos}\left(\frac{\pi }{2}-\theta \right)\hfill \\ \hfill \mathrm{cos}\text{\hspace{0.17em}}\theta & =& \mathrm{sin}\left(\frac{\pi }{2}-\theta \right)\hfill \\ \hfill \mathrm{tan}\text{\hspace{0.17em}}\theta & =& \mathrm{cot}\left(\frac{\pi }{2}-\theta \right)\hfill \\ \hfill \mathrm{cot}\text{\hspace{0.17em}}\theta & =& \mathrm{tan}\left(\frac{\pi }{2}-\theta \right)\hfill \\ \hfill \mathrm{sec}\text{\hspace{0.17em}}\theta & =& \mathrm{csc}\left(\frac{\pi }{2}-\theta \right)\hfill \\ \hfill \mathrm{csc}\text{\hspace{0.17em}}\theta & =& \mathrm{sec}\left(\frac{\pi }{2}-\theta \right)\hfill \end{array}$

## Key concepts

• The sum formula for cosines states that the cosine of the sum of two angles equals the product of the cosines of the angles minus the product of the sines of the angles. The difference formula for cosines states that the cosine of the difference of two angles equals the product of the cosines of the angles plus the product of the sines of the angles.
• The sum and difference formulas can be used to find the exact values of the sine, cosine, or tangent of an angle. See [link] and [link] .
• The sum formula for sines states that the sine of the sum of two angles equals the product of the sine of the first angle and cosine of the second angle plus the product of the cosine of the first angle and the sine of the second angle. The difference formula for sines states that the sine of the difference of two angles equals the product of the sine of the first angle and cosine of the second angle minus the product of the cosine of the first angle and the sine of the second angle. See [link] .
• The sum and difference formulas for sine and cosine can also be used for inverse trigonometric functions. See [link] .
• The sum formula for tangent states that the tangent of the sum of two angles equals the sum of the tangents of the angles divided by 1 minus the product of the tangents of the angles. The difference formula for tangent states that the tangent of the difference of two angles equals the difference of the tangents of the angles divided by 1 plus the product of the tangents of the angles. See [link] .
• The Pythagorean Theorem along with the sum and difference formulas can be used to find multiple sums and differences of angles. See [link] .
• The cofunction identities apply to complementary angles and pairs of reciprocal functions. See [link] .
• Sum and difference formulas are useful in verifying identities. See [link] and [link] .
• Application problems are often easier to solve by using sum and difference formulas. See [link] and [link] .

#### Questions & Answers

find general solution of the Tanx=-1/root3,secx=2/root3
find general solution of the following equation
Nani
the value of 2 sin square 60 Cos 60
0.75
Lynne
0.75
Inkoom
when can I use sin, cos tan in a giving question
depending on the question
Nicholas
I am a carpenter and I have to cut and assemble a conventional roof line for a new home. The dimensions are: width 30'6" length 40'6". I want a 6 and 12 pitch. The roof is a full hip construction. Give me the L,W and height of rafters for the hip, hip jacks also the length of common jacks.
John
I want to learn the calculations
where can I get indices
I need matrices
Nasasira
hi
Raihany
Hi
Solomon
need help
Raihany
maybe provide us videos
Nasasira
Raihany
Hello
Cromwell
a
Amie
What do you mean by a
Cromwell
nothing. I accidentally press it
Amie
you guys know any app with matrices?
Khay
Ok
Cromwell
Solve the x? x=18+(24-3)=72
x-39=72 x=111
Suraj
Solve the formula for the indicated variable P=b+4a+2c, for b
Need help with this question please
b=-4ac-2c+P
Denisse
b=p-4a-2c
Suddhen
b= p - 4a - 2c
Snr
p=2(2a+C)+b
Suraj
b=p-2(2a+c)
Tapiwa
P=4a+b+2C
COLEMAN
b=P-4a-2c
COLEMAN
like Deadra, show me the step by step order of operation to alive for b
John
A laser rangefinder is locked on a comet approaching Earth. The distance g(x), in kilometers, of the comet after x days, for x in the interval 0 to 30 days, is given by g(x)=250,000csc(π30x). Graph g(x) on the interval [0, 35]. Evaluate g(5)  and interpret the information. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond? Find and discuss the meaning of any vertical asymptotes.
The sequence is {1,-1,1-1.....} has
circular region of radious
how can we solve this problem
Sin(A+B) = sinBcosA+cosBsinA
Prove it
Eseka
Eseka
hi
Joel
yah
immy
June needs 45 gallons of punch. 2 different coolers. Bigger cooler is 5 times as large as smaller cooler. How many gallons in each cooler?
7.5 and 37.5
Nando
how would this look as an equation?
Hayden
5x+x=45
Khay
find the sum of 28th term of the AP 3+10+17+---------
I think you should say "28 terms" instead of "28th term"
Vedant
the 28th term is 175
Nando
192
Kenneth
if sequence sn is a such that sn>0 for all n and lim sn=0than prove that lim (s1 s2............ sn) ke hole power n =n By By   By  By By   By By