<< Chapter < Page Chapter >> Page >
Two oblique triangles with standard labels. Both have a dotted altitude line h extended from angle beta to the horizontal base side b. In the first, which is an acute triangle, the altitude is within the triangle. In the second, which is an obtuse triangle, the altitude h is outside of the triangle.


Area = 1 2 ( base ) ( height ) = 1 2 b ( c sin α )


Area = 1 2 a ( b sin γ ) = 1 2 a ( c sin β )

Area of an oblique triangle

The formula for the area of an oblique triangle is given by

Area = 1 2 b c sin α = 1 2 a c sin β = 1 2 a b sin γ

This is equivalent to one-half of the product of two sides and the sine of their included angle.

Finding the area of an oblique triangle

Find the area of a triangle with sides a = 90 , b = 52 , and angle γ = 102° . Round the area to the nearest integer.

Using the formula, we have

Area = 1 2 a b sin γ Area = 1 2 ( 90 ) ( 52 ) sin ( 102° ) Area 2289 square units

Find the area of the triangle given β = 42° , a = 7.2 ft , c = 3.4 ft . Round the area to the nearest tenth.

about 8.2 square feet

Solving applied problems using the law of sines

The more we study trigonometric applications, the more we discover that the applications are countless. Some are flat, diagram-type situations, but many applications in calculus, engineering, and physics involve three dimensions and motion.

Finding an altitude

Find the altitude of the aircraft in the problem introduced at the beginning of this section, shown in [link] . Round the altitude to the nearest tenth of a mile.

A diagram of a triangle where the vertices are the first ground station, the second ground station, and the airplane in the air between them. The angle between the first ground station and the plane is 15 degrees, and the angle between the second station and the airplane is 35 degrees. The side between the two stations is of length 20 miles. There is a dotted altitude line perpendicular to the ground side connecting the airplane vertex with the ground.

To find the elevation of the aircraft, we first find the distance from one station to the aircraft, such as the side a , and then use right triangle relationships to find the height of the aircraft, h .

Because the angles in the triangle add up to 180 degrees, the unknown angle must be 180°−15°−35°=130°. This angle is opposite the side of length 20, allowing us to set up a Law of Sines relationship.

   sin ( 130° ) 20 = sin ( 35° ) a a sin ( 130° ) = 20 sin ( 35° )                 a = 20 sin ( 35° ) sin ( 130° )                 a 14.98

The distance from one station to the aircraft is about 14.98 miles.

Now that we know a , we can use right triangle relationships to solve for h .

sin ( 15° ) = opposite hypotenuse sin ( 15° ) = h a sin ( 15° ) = h 14.98             h = 14.98 sin ( 15° )            h 3.88

The aircraft is at an altitude of approximately 3.9 miles.

The diagram shown in [link] represents the height of a blimp flying over a football stadium. Find the height of the blimp if the angle of elevation at the southern end zone, point A, is 70°, the angle of elevation from the northern end zone, point B , is 62°, and the distance between the viewing points of the two end zones is 145 yards.

An oblique triangle formed from three vertices A, B, and C. Verticies A and B are points on the ground, and vertex C is the blimp in the air between them. The distance between A and B is 145 yards. The angle at vertex A is 70 degrees, and the angle at vertex B is 62 degrees.

161.9 yd.

Access these online resources for additional instruction and practice with trigonometric applications.

Key equations

Law of Sines sin α a = sin β b = sin γ c a sin α = b sin β = c sin γ
Area for oblique triangles Area = 1 2 b c sin α         = 1 2 a c sin β         = 1 2 a b sin γ

Key concepts

  • The Law of Sines can be used to solve oblique triangles, which are non-right triangles.
  • According to the Law of Sines, the ratio of the measurement of one of the angles to the length of its opposite side equals the other two ratios of angle measure to opposite side.
  • There are three possible cases: ASA, AAS, SSA. Depending on the information given, we can choose the appropriate equation to find the requested solution. See [link] .
  • The ambiguous case arises when an oblique triangle can have different outcomes.
  • There are three possible cases that arise from SSA arrangement—a single solution, two possible solutions, and no solution. See [link] and [link] .
  • The Law of Sines can be used to solve triangles with given criteria. See [link] .
  • The general area formula for triangles translates to oblique triangles by first finding the appropriate height value. See [link] .
  • There are many trigonometric applications. They can often be solved by first drawing a diagram of the given information and then using the appropriate equation. See [link] .

Questions & Answers

how can chip be made from sand
Eke Reply
is this allso about nanoscale material
are nano particles real
Missy Reply
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
Lale Reply
no can't
where is the latest information on a no technology how can I find it
where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
Application of nanotechnology in medicine
has a lot of application modern world
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
yes that's correct
I think
Nasa has use it in the 60's, copper as water purification in the moon travel.
nanocopper obvius
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
analytical skills graphene is prepared to kill any type viruses .
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now

Source:  OpenStax, Contemporary math applications. OpenStax CNX. Dec 15, 2014 Download for free at http://legacy.cnx.org/content/col11559/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Contemporary math applications' conversation and receive update notifications?