<< Chapter < Page Chapter >> Page >

Access the following online resource for additional instruction and practice with graphing polynomial functions.

Key concepts

  • Polynomial functions of degree 2 or more are smooth, continuous functions. See [link] .
  • To find the zeros of a polynomial function, if it can be factored, factor the function and set each factor equal to zero. See [link] , [link] , and [link] .
  • Another way to find the x - intercepts of a polynomial function is to graph the function and identify the points at which the graph crosses the x - axis. See [link] .
  • The multiplicity of a zero determines how the graph behaves at the x - intercepts. See [link] .
  • The graph of a polynomial will cross the horizontal axis at a zero with odd multiplicity.
  • The graph of a polynomial will touch the horizontal axis at a zero with even multiplicity.
  • The end behavior of a polynomial function depends on the leading term.
  • The graph of a polynomial function changes direction at its turning points.
  • A polynomial function of degree n has at most n 1 turning points. See [link] .
  • To graph polynomial functions, find the zeros and their multiplicities, determine the end behavior, and ensure that the final graph has at most n 1 turning points. See [link] and [link] .
  • Graphing a polynomial function helps to estimate local and global extremas. See [link] .
  • The Intermediate Value Theorem tells us that if f ( a )   and   f ( b ) have opposite signs, then there exists at least one value c between a and b for which f ( c ) = 0. See [link] .

Section exercises

Verbal

What is the difference between an x - intercept and a zero of a polynomial function f ?

The x - intercept is where the graph of the function crosses the x - axis, and the zero of the function is the input value for which f ( x ) = 0.

Got questions? Get instant answers now!

If a polynomial function of degree n has n distinct zeros, what do you know about the graph of the function?

Got questions? Get instant answers now!

Explain how the Intermediate Value Theorem can assist us in finding a zero of a function.

If we evaluate the function at a and at b and the sign of the function value changes, then we know a zero exists between a and b .

Got questions? Get instant answers now!

Explain how the factored form of the polynomial helps us in graphing it.

Got questions? Get instant answers now!

If the graph of a polynomial just touches the x -axis and then changes direction, what can we conclude about the factored form of the polynomial?

There will be a factor raised to an even power.

Got questions? Get instant answers now!

Algebraic

For the following exercises, find the x - or t -intercepts of the polynomial functions.

C ( t ) = 2 ( t 4 ) ( t + 1 ) ( t 6 )

Got questions? Get instant answers now!

C ( t ) = 3 ( t + 2 ) ( t 3 ) ( t + 5 )

( 2 , 0 ) , ( 3 , 0 ) , ( 5 , 0 )

Got questions? Get instant answers now!

C ( t ) = 4 t ( t 2 ) 2 ( t + 1 )

Got questions? Get instant answers now!

C ( t ) = 2 t ( t 3 ) ( t + 1 ) 2

( 3 , 0 ) , ( 1 , 0 ) , ( 0 , 0 )

Got questions? Get instant answers now!

C ( t ) = 2 t 4 8 t 3 + 6 t 2

Got questions? Get instant answers now!

C ( t ) = 4 t 4 + 12 t 3 40 t 2

( 0 , 0 ) ,   ( 5 , 0 ) ,   ( 2 , 0 )

Got questions? Get instant answers now!

f ( x ) = x 4 x 2

Got questions? Get instant answers now!

f ( x ) = x 3 + x 2 20 x

( 0 , 0 ) ,   ( 5 , 0 ) ,   ( 4 , 0 )

Got questions? Get instant answers now!

f ( x ) = x 3 + 6 x 2 7 x

Got questions? Get instant answers now!

f ( x ) = x 3 + x 2 4 x 4

( 2 , 0 ) ,   ( 2 , 0 ) ,   ( 1 , 0 )

Got questions? Get instant answers now!

f ( x ) = x 3 + 2 x 2 9 x 18

Got questions? Get instant answers now!

f ( x ) = 2 x 3 x 2 8 x + 4

( 2 , 0 ) , ( 2 , 0 ) , ( 1 2 , 0 )

Got questions? Get instant answers now!

f ( x ) = x 6 7 x 3 8

Got questions? Get instant answers now!

f ( x ) = 2 x 4 + 6 x 2 8

( 1 , 0 ) ,   ( 1 , 0 )

Got questions? Get instant answers now!

f ( x ) = x 3 3 x 2 x + 3

Got questions? Get instant answers now!

f ( x ) = x 6 2 x 4 3 x 2

( 0 , 0 ) , ( 3 , 0 ) , ( 3 , 0 )

Got questions? Get instant answers now!

f ( x ) = x 6 3 x 4 4 x 2

Got questions? Get instant answers now!

f ( x ) = x 5 5 x 3 + 4 x

( 0 , 0 ) ,   ( 1 , 0 ) ( 1 , 0 ) ,   ( 2 , 0 ) ,   ( 2 , 0 )

Got questions? Get instant answers now!

For the following exercises, use the Intermediate Value Theorem to confirm that the given polynomial has at least one zero within the given interval.

f ( x ) = x 3 9 x , between x = −4 and x = −2.

Got questions? Get instant answers now!

f ( x ) = x 3 9 x , between x = 2 and x = 4.

f ( 2 ) = 10 and f ( 4 ) = 28. Sign change confirms.

Got questions? Get instant answers now!

Questions & Answers

if tan alpha + beta is equal to sin x + Y then prove that X square + Y square - 2 I got hyperbole 2 Beta + 1 is equal to zero
Rahul Reply
sin^4+sin^2=1, prove that tan^2-tan^4+1=0
SAYANTANI Reply
what is the formula used for this question? "Jamal wants to save $54,000 for a down payment on a home. How much will he need to invest in an account with 8.2% APR, compounding daily, in order to reach his goal in 5 years?"
Kuz Reply
i don't need help solving it I just need a memory jogger please.
Kuz
A = P(1 + r/n) ^rt
Dale
how to solve an expression when equal to zero
Mintah Reply
its a very simple
Kavita
gave your expression then i solve
Kavita
Hy guys, I have a problem when it comes on solving equations and expressions, can you help me 😭😭
Thuli
Tomorrow its an revision on factorising and Simplifying...
Thuli
ok sent the quiz
kurash
send
Kavita
Hi
Masum
What is the value of log-1
Masum
the value of log1=0
Kavita
Log(-1)
Masum
What is the value of i^i
Masum
log -1 is 1.36
kurash
No
Masum
no I m right
Kavita
No sister.
Masum
no I m right
Kavita
tan20°×tan30°×tan45°×tan50°×tan60°×tan70°
Joju Reply
jaldi batao
Joju
Find the value of x between 0degree and 360 degree which satisfy the equation 3sinx =tanx
musah Reply
what is sine?
tae Reply
what is the standard form of 1
Sanjana Reply
1×10^0
Akugry
Evalute exponential functions
Sujata Reply
30
Shani
The sides of a triangle are three consecutive natural number numbers and it's largest angle is twice the smallest one. determine the sides of a triangle
Jaya Reply
Will be with you shortly
Inkoom
3, 4, 5 principle from geo? sounds like a 90 and 2 45's to me that my answer
Neese
answer is 2, 3, 4
Gaurav
prove that [a+b, b+c, c+a]= 2[a b c]
Ashutosh Reply
can't prove
Akugry
i can prove [a+b+b+c+c+a]=2[a+b+c]
this is simple
Akugry
hi
Stormzy
x exposant 4 + 4 x exposant 3 + 8 exposant 2 + 4 x + 1 = 0
HERVE Reply
x exposent4+4x exposent3+8x exposent2+4x+1=0
HERVE
How can I solve for a domain and a codomains in a given function?
Oliver Reply
ranges
EDWIN
Thank you I mean range sir.
Oliver
proof for set theory
Kwesi Reply
don't you know?
Inkoom
find to nearest one decimal place of centimeter the length of an arc of circle of radius length 12.5cm and subtending of centeral angle 1.6rad
Martina Reply
Practice Key Terms 4

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask