# 8.3 Polar coordinates  (Page 5/8)

 Page 5 / 8

How are the polar axes different from the x - and y -axes of the Cartesian plane?

Explain how polar coordinates are graphed.

Determine $\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ for the point, then move $\text{\hspace{0.17em}}r\text{\hspace{0.17em}}$ units from the pole to plot the point. If $\text{\hspace{0.17em}}r\text{\hspace{0.17em}}$ is negative, move $\text{\hspace{0.17em}}r\text{\hspace{0.17em}}$ units from the pole in the opposite direction but along the same angle. The point is a distance of $\text{\hspace{0.17em}}r\text{\hspace{0.17em}}$ away from the origin at an angle of $\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ from the polar axis.

How are the points $\text{\hspace{0.17em}}\left(3,\frac{\pi }{2}\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(-3,\frac{\pi }{2}\right)\text{\hspace{0.17em}}$ related?

Explain why the points $\text{\hspace{0.17em}}\left(-3,\frac{\pi }{2}\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\left(3,-\frac{\pi }{2}\right)\text{\hspace{0.17em}}$ are the same.

The point $\text{\hspace{0.17em}}\left(-3,\frac{\pi }{2}\right)\text{\hspace{0.17em}}$ has a positive angle but a negative radius and is plotted by moving to an angle of $\text{\hspace{0.17em}}\frac{\pi }{2}\text{\hspace{0.17em}}$ and then moving 3 units in the negative direction. This places the point 3 units down the negative y -axis. The point $\text{\hspace{0.17em}}\left(3,-\frac{\pi }{2}\right)\text{\hspace{0.17em}}$ has a negative angle and a positive radius and is plotted by first moving to an angle of $\text{\hspace{0.17em}}-\frac{\pi }{2}\text{\hspace{0.17em}}$ and then moving 3 units down, which is the positive direction for a negative angle. The point is also 3 units down the negative y -axis.

## Algebraic

For the following exercises, convert the given polar coordinates to Cartesian coordinates with $\text{\hspace{0.17em}}r>0\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}0\le \theta \le 2\pi .\text{\hspace{0.17em}}$ Remember to consider the quadrant in which the given point is located when determining $\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ for the point.

$\left(7,\frac{7\pi }{6}\right)$

$\left(5,\pi \right)$

$\left(-5,0\right)$

$\left(6,-\frac{\pi }{4}\right)$

$\left(-3,\frac{\pi }{6}\right)$

$\left(-\frac{3\sqrt{3}}{2},-\frac{3}{2}\right)$

$\left(4,\frac{7\pi }{4}\right)$

For the following exercises, convert the given Cartesian coordinates to polar coordinates with $\text{\hspace{0.17em}}r>0,\text{\hspace{0.17em}}\text{\hspace{0.17em}}0\le \theta <2\pi .\text{\hspace{0.17em}}$ Remember to consider the quadrant in which the given point is located.

$\left(4,2\right)$

$\left(-4,6\right)$

$\left(3,-5\right)$

$\left(\sqrt{34},5.253\right)$

$\left(-10,-13\right)$

$\left(8,8\right)$

$\left(8\sqrt{2},\frac{\pi }{4}\right)$

For the following exercises, convert the given Cartesian equation to a polar equation.

$x=3$

$y=4$

$r=4\mathrm{csc}\theta$

$y=4{x}^{2}$

$y=2{x}^{4}$

$r=\sqrt{\frac{sin\theta }{2co{s}^{4}\theta }}$

${x}^{2}+{y}^{2}=4y$

${x}^{2}+{y}^{2}=3x$

$r=3\mathrm{cos}\theta$

${x}^{2}-{y}^{2}=x$

${x}^{2}-{y}^{2}=3y$

$r=\frac{3\mathrm{sin}\theta }{\mathrm{cos}\left(2\theta \right)}$

${x}^{2}+{y}^{2}=9$

${x}^{2}=9y$

$r=\frac{9\mathrm{sin}\theta }{{\mathrm{cos}}^{2}\theta }$

${y}^{2}=9x$

$9xy=1$

$r=\sqrt{\frac{1}{9\mathrm{cos}\theta \mathrm{sin}\theta }}$

For the following exercises, convert the given polar equation to a Cartesian equation. Write in the standard form of a conic if possible, and identify the conic section represented.

$r=3\mathrm{sin}\text{\hspace{0.17em}}\theta$

$r=4\mathrm{cos}\text{\hspace{0.17em}}\theta$

${x}^{2}+{y}^{2}=4x\text{\hspace{0.17em}}$ or $\text{\hspace{0.17em}}\frac{{\left(x-2\right)}^{2}}{4}+\frac{{y}^{2}}{4}=1;$ circle

$r=\frac{4}{\mathrm{sin}\text{\hspace{0.17em}}\theta +7\mathrm{cos}\text{\hspace{0.17em}}\theta }$

$r=\frac{6}{\mathrm{cos}\text{\hspace{0.17em}}\theta +3\mathrm{sin}\text{\hspace{0.17em}}\theta }$

$3y+x=6;\text{\hspace{0.17em}}$ line

$r=2\mathrm{sec}\text{\hspace{0.17em}}\theta$

$r=3\mathrm{csc}\text{\hspace{0.17em}}\theta$

$y=3;\text{\hspace{0.17em}}$ line

$r=\sqrt{r\mathrm{cos}\text{\hspace{0.17em}}\theta +2}$

${r}^{2}=4\mathrm{sec}\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}\mathrm{csc}\text{\hspace{0.17em}}\theta$

$xy=4;\text{\hspace{0.17em}}$ hyperbola

$r=4$

${r}^{2}=4$

${x}^{2}+{y}^{2}=4;\text{\hspace{0.17em}}$ circle

$r=\frac{1}{4\mathrm{cos}\text{\hspace{0.17em}}\theta -3\mathrm{sin}\text{\hspace{0.17em}}\theta }$

$r=\frac{3}{\mathrm{cos}\text{\hspace{0.17em}}\theta -5\mathrm{sin}\text{\hspace{0.17em}}\theta }$

$x-5y=3;\text{\hspace{0.17em}}$ line

## Graphical

For the following exercises, find the polar coordinates of the point.  $\left(3,\frac{3\pi }{4}\right)$  $\left(5,\pi \right)$ For the following exercises, plot the points.

$\left(-2,\frac{\pi }{3}\right)$ $\left(-1,-\frac{\pi }{2}\right)$

$\left(3.5,\frac{7\pi }{4}\right)$ $\left(-4,\frac{\pi }{3}\right)$

$\left(5,\frac{\pi }{2}\right)$ $\left(4,\frac{-5\pi }{4}\right)$

$\left(3,\frac{5\pi }{6}\right)$ $\left(-1.5,\frac{7\pi }{6}\right)$

$\left(-2,\frac{\pi }{4}\right)$ $\left(1,\frac{3\pi }{2}\right)$

For the following exercises, convert the equation from rectangular to polar form and graph on the polar axis.

$5x-y=6$

$r=\frac{6}{5\mathrm{cos}\theta -\mathrm{sin}\theta }$ $2x+7y=-3$

${x}^{2}+{\left(y-1\right)}^{2}=1$

$r=2\mathrm{sin}\theta$ ${\left(x+2\right)}^{2}+{\left(y+3\right)}^{2}=13$

$x=2$

$r=\frac{2}{\mathrm{cos}\theta }$ ${x}^{2}+{y}^{2}=5y$

${x}^{2}+{y}^{2}=3x$

$r=3\mathrm{cos}\theta$ For the following exercises, convert the equation from polar to rectangular form and graph on the rectangular plane.

$r=6$

$r=-4$

${x}^{2}+{y}^{2}=16$ $\theta =-\frac{2\pi }{3}$

$\theta =\frac{\pi }{4}$

$y=x$ $r=\mathrm{sec}\text{\hspace{0.17em}}\theta$

$r=-10\mathrm{sin}\text{\hspace{0.17em}}\theta$

${x}^{2}+{\left(y+5\right)}^{2}=25$ $r=3\mathrm{cos}\text{\hspace{0.17em}}\theta$

## Technology

Use a graphing calculator to find the rectangular coordinates of $\text{\hspace{0.17em}}\left(2,-\frac{\pi }{5}\right).\text{\hspace{0.17em}}$ Round to the nearest thousandth.

$\left(1.618,-1.176\right)$

Use a graphing calculator to find the rectangular coordinates of $\text{\hspace{0.17em}}\left(-3,\frac{3\pi }{7}\right).\text{\hspace{0.17em}}$ Round to the nearest thousandth.

Use a graphing calculator to find the polar coordinates of $\text{\hspace{0.17em}}\left(-7,8\right)\text{\hspace{0.17em}}$ in degrees. Round to the nearest thousandth.

$\left(10.630,131.186°\right)$

Use a graphing calculator to find the polar coordinates of $\text{\hspace{0.17em}}\left(3,-4\right)\text{\hspace{0.17em}}$ in degrees. Round to the nearest hundredth.

Use a graphing calculator to find the polar coordinates of $\text{\hspace{0.17em}}\left(-2,0\right)\text{\hspace{0.17em}}$ in radians. Round to the nearest hundredth.

$\text{\hspace{0.17em}}\left(2,3.14\right)or\left(2,\pi \right)\text{\hspace{0.17em}}$

## Extensions

Describe the graph of $\text{\hspace{0.17em}}r=a\mathrm{sec}\text{\hspace{0.17em}}\theta ;a>0.$

Describe the graph of $\text{\hspace{0.17em}}r=a\mathrm{sec}\text{\hspace{0.17em}}\theta ;a<0.$

A vertical line with $\text{\hspace{0.17em}}a\text{\hspace{0.17em}}$ units left of the y -axis.

Describe the graph of $\text{\hspace{0.17em}}r=a\mathrm{csc}\text{\hspace{0.17em}}\theta ;a>0.$

Describe the graph of $\text{\hspace{0.17em}}r=a\mathrm{csc}\text{\hspace{0.17em}}\theta ;a<0.$

A horizontal line with $\text{\hspace{0.17em}}a\text{\hspace{0.17em}}$ units below the x -axis.

What polar equations will give an oblique line?

For the following exercise, graph the polar inequality.

$r<4$ $0\le \theta \le \frac{\pi }{4}$

$\theta =\frac{\pi }{4},\text{\hspace{0.17em}}r\text{\hspace{0.17em}}\ge \text{\hspace{0.17em}}2$ $\theta =\frac{\pi }{4},\text{\hspace{0.17em}}r\text{\hspace{0.17em}}\ge -3$

$0\le \theta \le \frac{\pi }{3},\text{\hspace{0.17em}}r\text{\hspace{0.17em}}<\text{\hspace{0.17em}}2$ $\frac{-\pi }{6}<\theta \le \frac{\pi }{3},-3

how fast can i understand functions without much difficulty
what is set?
a colony of bacteria is growing exponentially doubling in size every 100 minutes. how much minutes will it take for the colony of bacteria to triple in size
I got 300 minutes. is it right?
Patience
no. should be about 150 minutes.
Jason
It should be 158.5 minutes.
Mr
ok, thanks
Patience
100•3=300 300=50•2^x 6=2^x x=log_2(6) =2.5849625 so, 300=50•2^2.5849625 and, so, the # of bacteria will double every (100•2.5849625) = 258.49625 minutes
Thomas
what is the importance knowing the graph of circular functions?
can get some help basic precalculus
What do you need help with?
Andrew
how to convert general to standard form with not perfect trinomial
can get some help inverse function
ismail
Rectangle coordinate
how to find for x
it depends on the equation
Robert
yeah, it does. why do we attempt to gain all of them one side or the other?
Melissa
whats a domain
The domain of a function is the set of all input on which the function is defined. For example all real numbers are the Domain of any Polynomial function.
Spiro
Spiro; thanks for putting it out there like that, 😁
Melissa
foci (–7,–17) and (–7,17), the absolute value of the differenceof the distances of any point from the foci is 24.
difference between calculus and pre calculus?
give me an example of a problem so that I can practice answering
x³+y³+z³=42
Robert
dont forget the cube in each variable ;)
Robert
of she solves that, well ... then she has a lot of computational force under her command ....
Walter
what is a function?
I want to learn about the law of exponent
explain this

#### Get Jobilize Job Search Mobile App in your pocket Now! By By By OpenStax By Monty Hartfield By Jazzycazz Jackson By By OpenStax By OpenStax By Katherina jennife... By OpenStax By OpenStax By OpenStax