# 8.3 Inverse trigonometric functions  (Page 2/15)

 Page 2 / 15

On these restricted domains, we can define the inverse trigonometric functions .

• The inverse sine function     $\text{\hspace{0.17em}}y={\mathrm{sin}}^{-1}x\text{\hspace{0.17em}}$ means $\text{\hspace{0.17em}}x=\mathrm{sin}\text{\hspace{0.17em}}y.\text{\hspace{0.17em}}$ The inverse sine function is sometimes called the arcsine    function, and notated $\text{\hspace{0.17em}}\mathrm{arcsin}x.$
• The inverse cosine function     $\text{\hspace{0.17em}}y={\mathrm{cos}}^{-1}x\text{\hspace{0.17em}}$ means $\text{\hspace{0.17em}}x=\mathrm{cos}\text{\hspace{0.17em}}y.\text{\hspace{0.17em}}$ The inverse cosine function is sometimes called the arccosine    function, and notated $\text{\hspace{0.17em}}\mathrm{arccos}\text{\hspace{0.17em}}x.$
• The inverse tangent function     $\text{\hspace{0.17em}}y={\mathrm{tan}}^{-1}x\text{\hspace{0.17em}}$ means $\text{\hspace{0.17em}}x=\mathrm{tan}\text{\hspace{0.17em}}y.\text{\hspace{0.17em}}$ The inverse tangent function is sometimes called the arctangent    function, and notated $\text{\hspace{0.17em}}\mathrm{arctan}\text{\hspace{0.17em}}x.$

The graphs of the inverse functions are shown in [link] , [link] , and [link] . Notice that the output of each of these inverse functions is a number, an angle in radian measure. We see that $\text{\hspace{0.17em}}{\mathrm{sin}}^{-1}x\text{\hspace{0.17em}}$ has domain $\text{\hspace{0.17em}}\left[-1,1\right]\text{\hspace{0.17em}}$ and range $\text{\hspace{0.17em}}\left[-\frac{\pi }{2},\frac{\pi }{2}\right],$ ${\mathrm{cos}}^{-1}x\text{\hspace{0.17em}}$ has domain $\text{\hspace{0.17em}}\left[-1,1\right]\text{\hspace{0.17em}}$ and range $\text{\hspace{0.17em}}\left[0,\pi \right],\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}{\mathrm{tan}}^{-1}x\text{\hspace{0.17em}}$ has domain of all real numbers and range $\text{\hspace{0.17em}}\left(-\frac{\pi }{2},\frac{\pi }{2}\right).\text{\hspace{0.17em}}$ To find the domain    and range    of inverse trigonometric functions, switch the domain and range of the original functions. Each graph of the inverse trigonometric function is a reflection of the graph of the original function about the line $\text{\hspace{0.17em}}y=x.$

## Relations for inverse sine, cosine, and tangent functions

For angles in the interval $\text{\hspace{0.17em}}\left[-\frac{\pi }{2},\frac{\pi }{2}\right],\text{\hspace{0.17em}}$ if $\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}y=x,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}{\mathrm{sin}}^{-1}x=y.$

For angles in the interval $\text{\hspace{0.17em}}\left[0,\pi \right],\text{\hspace{0.17em}}$ if $\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}y=x,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}{\mathrm{cos}}^{-1}x=y.$

For angles in the interval $\text{\hspace{0.17em}}\left(-\frac{\pi }{2},\frac{\pi }{2}\right),\text{\hspace{0.17em}}$ if $\text{\hspace{0.17em}}\mathrm{tan}\text{\hspace{0.17em}}y=x,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}{\mathrm{tan}}^{-1}x=y.$

## Writing a relation for an inverse function

Given $\text{\hspace{0.17em}}\mathrm{sin}\left(\frac{5\pi }{12}\right)\approx 0.96593,\text{\hspace{0.17em}}$ write a relation involving the inverse sine.

Use the relation for the inverse sine. If $\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}y=x,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}{\mathrm{sin}}^{-1}x=y$ .

In this problem, $\text{\hspace{0.17em}}x=0.96593,\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}y=\frac{5\pi }{12}.$

${\mathrm{sin}}^{-1}\left(0.96593\right)\approx \frac{5\pi }{12}$

Given $\text{\hspace{0.17em}}\mathrm{cos}\left(0.5\right)\approx 0.8776,$ write a relation involving the inverse cosine.

$\mathrm{arccos}\left(0.8776\right)\approx 0.5$

## Finding the exact value of expressions involving the inverse sine, cosine, and tangent functions

Now that we can identify inverse functions, we will learn to evaluate them. For most values in their domains, we must evaluate the inverse trigonometric functions by using a calculator, interpolating from a table, or using some other numerical technique. Just as we did with the original trigonometric functions, we can give exact values for the inverse functions when we are using the special angles, specifically $\text{\hspace{0.17em}}\frac{\pi }{6}\text{\hspace{0.17em}}$ (30°), $\text{\hspace{0.17em}}\frac{\pi }{4}\text{\hspace{0.17em}}$ (45°), and $\text{\hspace{0.17em}}\frac{\pi }{3}\text{\hspace{0.17em}}$ (60°), and their reflections into other quadrants.

Given a “special” input value, evaluate an inverse trigonometric function.

1. Find angle $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ for which the original trigonometric function has an output equal to the given input for the inverse trigonometric function.
2. If $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ is not in the defined range of the inverse, find another angle $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ that is in the defined range and has the same sine, cosine, or tangent as $\text{\hspace{0.17em}}x,$ depending on which corresponds to the given inverse function.

## Evaluating inverse trigonometric functions for special input values

Evaluate each of the following.

1. ${\text{sin}}^{-1}\left(\frac{1}{2}\right)$
2. ${\text{sin}}^{-1}\left(-\frac{\sqrt{2}}{2}\right)$
3. ${\mathrm{cos}}^{-1}\left(-\frac{\sqrt{3}}{2}\right)$
4. ${\mathrm{tan}}^{-1}\left(1\right)$
1. Evaluating $\text{\hspace{0.17em}}{\mathrm{sin}}^{-1}\left(\frac{1}{2}\right)\text{\hspace{0.17em}}$ is the same as determining the angle that would have a sine value of $\text{\hspace{0.17em}}\frac{1}{2}.\text{\hspace{0.17em}}$ In other words, what angle $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ would satisfy $\text{\hspace{0.17em}}\mathrm{sin}\left(x\right)=\frac{1}{2}?\text{\hspace{0.17em}}$ There are multiple values that would satisfy this relationship, such as $\text{\hspace{0.17em}}\frac{\pi }{6}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\frac{5\pi }{6},\text{\hspace{0.17em}}$ but we know we need the angle in the interval $\text{\hspace{0.17em}}\left[-\frac{\pi }{2},\frac{\pi }{2}\right],\text{\hspace{0.17em}}$ so the answer will be $\text{\hspace{0.17em}}{\mathrm{sin}}^{-1}\left(\frac{1}{2}\right)=\frac{\pi }{6}.\text{\hspace{0.17em}}$ Remember that the inverse is a function, so for each input, we will get exactly one output.
2. To evaluate $\text{\hspace{0.17em}}{\mathrm{sin}}^{-1}\left(-\frac{\sqrt{2}}{2}\right),\text{\hspace{0.17em}}$ we know that $\text{\hspace{0.17em}}\frac{5\pi }{4}\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}\frac{7\pi }{4}\text{\hspace{0.17em}}$ both have a sine value of $\text{\hspace{0.17em}}-\frac{\sqrt{2}}{2},\text{\hspace{0.17em}}$ but neither is in the interval $\text{\hspace{0.17em}}\left[-\frac{\pi }{2},\frac{\pi }{2}\right].\text{\hspace{0.17em}}$ For that, we need the negative angle coterminal with $\text{\hspace{0.17em}}\frac{7\pi }{4}:$ ${\text{sin}}^{-1}\left(-\frac{\sqrt{2}}{2}\right)=-\frac{\pi }{4}.\text{\hspace{0.17em}}$
3. To evaluate $\text{\hspace{0.17em}}{\mathrm{cos}}^{-1}\left(-\frac{\sqrt{3}}{2}\right),\text{\hspace{0.17em}}$ we are looking for an angle in the interval $\text{\hspace{0.17em}}\left[0,\pi \right]\text{\hspace{0.17em}}$ with a cosine value of $\text{\hspace{0.17em}}-\frac{\sqrt{3}}{2}.\text{\hspace{0.17em}}$ The angle that satisfies this is $\text{\hspace{0.17em}}{\mathrm{cos}}^{-1}\left(-\frac{\sqrt{3}}{2}\right)=\frac{5\pi }{6}.$
4. Evaluating $\text{\hspace{0.17em}}{\mathrm{tan}}^{-1}\left(1\right),\text{\hspace{0.17em}}$ we are looking for an angle in the interval $\text{\hspace{0.17em}}\left(-\frac{\pi }{2},\frac{\pi }{2}\right)\text{\hspace{0.17em}}$ with a tangent value of 1. The correct angle is $\text{\hspace{0.17em}}{\mathrm{tan}}^{-1}\left(1\right)=\frac{\pi }{4}.$

bsc F. y algebra and trigonometry pepper 2
given that x= 3/5 find sin 3x
4
DB
remove any signs and collect terms of -2(8a-3b-c)
-16a+6b+2c
Will
Joeval
(x2-2x+8)-4(x2-3x+5)
sorry
Miranda
x²-2x+9-4x²+12x-20 -3x²+10x+11
Miranda
x²-2x+9-4x²+12x-20 -3x²+10x+11
Miranda
(X2-2X+8)-4(X2-3X+5)=0 ?
master
The anwser is imaginary number if you want to know The anwser of the expression you must arrange The expression and use quadratic formula To find the answer
master
The anwser is imaginary number if you want to know The anwser of the expression you must arrange The expression and use quadratic formula To find the answer
master
Y
master
master
Soo sorry (5±Root11* i)/3
master
Mukhtar
explain and give four example of hyperbolic function
What is the correct rational algebraic expression of the given "a fraction whose denominator is 10 more than the numerator y?
y/y+10
Mr
Find nth derivative of eax sin (bx + c).
Find area common to the parabola y2 = 4ax and x2 = 4ay.
Anurag
A rectangular garden is 25ft wide. if its area is 1125ft, what is the length of the garden
to find the length I divide the area by the wide wich means 1125ft/25ft=45
Miranda
thanks
Jhovie
What do you call a relation where each element in the domain is related to only one value in the range by some rules?
A banana.
Yaona
given 4cot thither +3=0and 0°<thither <180° use a sketch to determine the value of the following a)cos thither
what are you up to?
nothing up todat yet
Miranda
hi
jai
hello
jai
Miranda Drice
jai
aap konsi country se ho
jai
which language is that
Miranda
I am living in india
jai
good
Miranda
what is the formula for calculating algebraic
I think the formula for calculating algebraic is the statement of the equality of two expression stimulate by a set of addition, multiplication, soustraction, division, raising to a power and extraction of Root. U believe by having those in the equation you will be in measure to calculate it
Miranda
state and prove Cayley hamilton therom
hello
Propessor
hi
Miranda
the Cayley hamilton Theorem state if A is a square matrix and if f(x) is its characterics polynomial then f(x)=0 in another ways evey square matrix is a root of its chatacteristics polynomial.
Miranda
hi
jai
hi Miranda
jai
thanks
Propessor
welcome
jai
What is algebra
algebra is a branch of the mathematics to calculate expressions follow.
Miranda
Miranda Drice would you mind teaching me mathematics? I think you are really good at math. I'm not good at it. In fact I hate it. 😅😅😅
Jeffrey
lolll who told you I'm good at it
Miranda
something seems to wispher me to my ear that u are good at it. lol
Jeffrey
lolllll if you say so
Miranda
but seriously, Im really bad at math. And I hate it. But you see, I downloaded this app two months ago hoping to master it.
Jeffrey
which grade are you in though
Miranda
oh woww I understand
Miranda
Jeffrey
Jeffrey
Miranda
how come you finished in college and you don't like math though
Miranda
gotta practice, holmie
Steve
if you never use it you won't be able to appreciate it
Steve
I don't know why. But Im trying to like it.
Jeffrey
yes steve. you're right
Jeffrey
so you better
Miranda
what is the solution of the given equation?
which equation
Miranda
I dont know. lol
Jeffrey
Miranda
Jeffrey