# 4.6 Exponential and logarithmic equations  (Page 7/8)

 Page 7 / 8

When does an extraneous solution occur? How can an extraneous solution be recognized?

When can the one-to-one property of logarithms be used to solve an equation? When can it not be used?

The one-to-one property can be used if both sides of the equation can be rewritten as a single logarithm with the same base. If so, the arguments can be set equal to each other, and the resulting equation can be solved algebraically. The one-to-one property cannot be used when each side of the equation cannot be rewritten as a single logarithm with the same base.

## Algebraic

For the following exercises, use like bases to solve the exponential equation.

${4}^{-3v-2}={4}^{-v}$

$64\cdot {4}^{3x}=16$

$x=-\frac{1}{3}$

${3}^{2x+1}\cdot {3}^{x}=243$

${2}^{-3n}\cdot \frac{1}{4}={2}^{n+2}$

$n=-1$

$625\cdot {5}^{3x+3}=125$

$\frac{{36}^{3b}}{{36}^{2b}}={216}^{2-b}$

$b=\frac{6}{5}$

${\left(\frac{1}{64}\right)}^{3n}\cdot 8={2}^{6}$

For the following exercises, use logarithms to solve.

${9}^{x-10}=1$

$x=10$

$2{e}^{6x}=13$

${e}^{r+10}-10=-42$

No solution

$2\cdot {10}^{9a}=29$

$-8\cdot {10}^{p+7}-7=-24$

$p=\mathrm{log}\left(\frac{17}{8}\right)-7$

$7{e}^{3n-5}+5=-89$

${e}^{-3k}+6=44$

$k=-\frac{\mathrm{ln}\left(38\right)}{3}$

$-5{e}^{9x-8}-8=-62$

$-6{e}^{9x+8}+2=-74$

$x=\frac{\mathrm{ln}\left(\frac{38}{3}\right)-8}{9}$

${2}^{x+1}={5}^{2x-1}$

${e}^{2x}-{e}^{x}-132=0$

$7{e}^{8x+8}-5=-95$

$10{e}^{8x+3}+2=8$

$x=\frac{\mathrm{ln}\left(\frac{3}{5}\right)-3}{8}$

$4{e}^{3x+3}-7=53$

$8{e}^{-5x-2}-4=-90$

no solution

${3}^{2x+1}={7}^{x-2}$

${e}^{2x}-{e}^{x}-6=0$

$x=\mathrm{ln}\left(3\right)$

$3{e}^{3-3x}+6=-31$

For the following exercises, use the definition of a logarithm to rewrite the equation as an exponential equation.

$\mathrm{log}\left(\frac{1}{100}\right)=-2$

${10}^{-2}=\frac{1}{100}$

${\mathrm{log}}_{324}\left(18\right)=\frac{1}{2}$

For the following exercises, use the definition of a logarithm to solve the equation.

$5{\mathrm{log}}_{7}n=10$

$n=49$

$-8{\mathrm{log}}_{9}x=16$

$4+{\mathrm{log}}_{2}\left(9k\right)=2$

$k=\frac{1}{36}$

$2\mathrm{log}\left(8n+4\right)+6=10$

$10-4\mathrm{ln}\left(9-8x\right)=6$

$x=\frac{9-e}{8}$

For the following exercises, use the one-to-one property of logarithms to solve.

$\mathrm{ln}\left(10-3x\right)=\mathrm{ln}\left(-4x\right)$

${\mathrm{log}}_{13}\left(5n-2\right)={\mathrm{log}}_{13}\left(8-5n\right)$

$n=1$

$\mathrm{log}\left(x+3\right)-\mathrm{log}\left(x\right)=\mathrm{log}\left(74\right)$

$\mathrm{ln}\left(-3x\right)=\mathrm{ln}\left({x}^{2}-6x\right)$

No solution

${\mathrm{log}}_{4}\left(6-m\right)={\mathrm{log}}_{4}3m$

$\mathrm{ln}\left(x-2\right)-\mathrm{ln}\left(x\right)=\mathrm{ln}\left(54\right)$

No solution

${\mathrm{log}}_{9}\left(2{n}^{2}-14n\right)={\mathrm{log}}_{9}\left(-45+{n}^{2}\right)$

$\mathrm{ln}\left({x}^{2}-10\right)+\mathrm{ln}\left(9\right)=\mathrm{ln}\left(10\right)$

$x=±\frac{10}{3}$

For the following exercises, solve each equation for $\text{\hspace{0.17em}}x.$

$\mathrm{log}\left(x+12\right)=\mathrm{log}\left(x\right)+\mathrm{log}\left(12\right)$

$\mathrm{ln}\left(x\right)+\mathrm{ln}\left(x-3\right)=\mathrm{ln}\left(7x\right)$

$x=10$

${\mathrm{log}}_{2}\left(7x+6\right)=3$

$\mathrm{ln}\left(7\right)+\mathrm{ln}\left(2-4{x}^{2}\right)=\mathrm{ln}\left(14\right)$

$x=0$

${\mathrm{log}}_{8}\left(x+6\right)-{\mathrm{log}}_{8}\left(x\right)={\mathrm{log}}_{8}\left(58\right)$

$\mathrm{ln}\left(3\right)-\mathrm{ln}\left(3-3x\right)=\mathrm{ln}\left(4\right)$

$x=\frac{3}{4}$

${\mathrm{log}}_{3}\left(3x\right)-{\mathrm{log}}_{3}\left(6\right)={\mathrm{log}}_{3}\left(77\right)$

## Graphical

For the following exercises, solve the equation for $\text{\hspace{0.17em}}x,$ if there is a solution . Then graph both sides of the equation, and observe the point of intersection (if it exists) to verify the solution.

${\mathrm{log}}_{9}\left(x\right)-5=-4$

$x=9$

${\mathrm{log}}_{3}\left(x\right)+3=2$

$\mathrm{ln}\left(3x\right)=2$

$x=\frac{{e}^{2}}{3}\approx 2.5$

$\mathrm{ln}\left(x-5\right)=1$

$\mathrm{log}\left(4\right)+\mathrm{log}\left(-5x\right)=2$

$x=-5$

$-7+{\mathrm{log}}_{3}\left(4-x\right)=-6$

$\mathrm{ln}\left(4x-10\right)-6=-5$

$x=\frac{e+10}{4}\approx 3.2$

$\mathrm{log}\left(4-2x\right)=\mathrm{log}\left(-4x\right)$

${\mathrm{log}}_{11}\left(-2{x}^{2}-7x\right)={\mathrm{log}}_{11}\left(x-2\right)$

No solution

$\mathrm{ln}\left(2x+9\right)=\mathrm{ln}\left(-5x\right)$

${\mathrm{log}}_{9}\left(3-x\right)={\mathrm{log}}_{9}\left(4x-8\right)$

$x=\frac{11}{5}\approx 2.2$

$\mathrm{log}\left({x}^{2}+13\right)=\mathrm{log}\left(7x+3\right)$

$\frac{3}{{\mathrm{log}}_{2}\left(10\right)}-\mathrm{log}\left(x-9\right)=\mathrm{log}\left(44\right)$

$x=\frac{101}{11}\approx 9.2$

$\mathrm{ln}\left(x\right)-\mathrm{ln}\left(x+3\right)=\mathrm{ln}\left(6\right)$

For the following exercises, solve for the indicated value, and graph the situation showing the solution point.

An account with an initial deposit of $\text{\hspace{0.17em}}\text{6,500}\text{\hspace{0.17em}}$ earns $\text{\hspace{0.17em}}7.25%\text{\hspace{0.17em}}$ annual interest, compounded continuously. How much will the account be worth after 20 years?

about $\text{\hspace{0.17em}}27,710.24$

The formula for measuring sound intensity in decibels $\text{\hspace{0.17em}}D\text{\hspace{0.17em}}$ is defined by the equation $\text{\hspace{0.17em}}D=10\mathrm{log}\left(\frac{I}{{I}_{0}}\right),\text{}$ where $\text{\hspace{0.17em}}I\text{\hspace{0.17em}}$ is the intensity of the sound in watts per square meter and $\text{\hspace{0.17em}}{I}_{0}={10}^{-12}\text{\hspace{0.17em}}$ is the lowest level of sound that the average person can hear. How many decibels are emitted from a jet plane with a sound intensity of $\text{\hspace{0.17em}}8.3\cdot {10}^{2}\text{\hspace{0.17em}}$ watts per square meter?

The population of a small town is modeled by the equation $\text{\hspace{0.17em}}P=1650{e}^{0.5t}\text{\hspace{0.17em}}$ where $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ is measured in years. In approximately how many years will the town’s population reach $\text{\hspace{0.17em}}\text{20,000?}$

## Technology

For the following exercises, solve each equation by rewriting the exponential expression using the indicated logarithm. Then use a calculator to approximate $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ to 3 decimal places .

$1000{\left(1.03\right)}^{t}=5000\text{\hspace{0.17em}}$ using the common log.

${e}^{5x}=17\text{\hspace{0.17em}}$ using the natural log

$\frac{\mathrm{ln}\left(17\right)}{5}\approx 0.567$

$3{\left(1.04\right)}^{3t}=8\text{\hspace{0.17em}}$ using the common log

${3}^{4x-5}=38\text{\hspace{0.17em}}$ using the common log

$50{e}^{-0.12t}=10\text{\hspace{0.17em}}$ using the natural log

For the following exercises, use a calculator to solve the equation. Unless indicated otherwise, round all answers to the nearest ten-thousandth.

$7{e}^{3x-5}+7.9=47$

$x\approx 2.2401$

$\mathrm{ln}\left(3\right)+\mathrm{ln}\left(4.4x+6.8\right)=2$

$\mathrm{log}\left(-0.7x-9\right)=1+5\mathrm{log}\left(5\right)$

$x\approx -\text{44655}.\text{7143}$

Atmospheric pressure $\text{\hspace{0.17em}}P\text{\hspace{0.17em}}$ in pounds per square inch is represented by the formula $\text{\hspace{0.17em}}P=14.7{e}^{-0.21x},$ where $x$ is the number of miles above sea level. To the nearest foot, how high is the peak of a mountain with an atmospheric pressure of $\text{\hspace{0.17em}}8.369\text{\hspace{0.17em}}$ pounds per square inch? ( Hint : there are 5280 feet in a mile)

The magnitude M of an earthquake is represented by the equation $\text{\hspace{0.17em}}M=\frac{2}{3}\mathrm{log}\left(\frac{E}{{E}_{0}}\right)\text{\hspace{0.17em}}$ where $\text{\hspace{0.17em}}E\text{\hspace{0.17em}}$ is the amount of energy released by the earthquake in joules and $\text{\hspace{0.17em}}{E}_{0}={10}^{4.4}\text{\hspace{0.17em}}$ is the assigned minimal measure released by an earthquake. To the nearest hundredth, what would the magnitude be of an earthquake releasing $\text{\hspace{0.17em}}1.4\cdot {10}^{13}\text{\hspace{0.17em}}$ joules of energy?

about $\text{\hspace{0.17em}}5.83$

## Extensions

Use the definition of a logarithm along with the one-to-one property of logarithms to prove that $\text{\hspace{0.17em}}{b}^{{\mathrm{log}}_{b}x}=x.$

Recall the formula for continually compounding interest, $\text{\hspace{0.17em}}y=A{e}^{kt}.\text{\hspace{0.17em}}$ Use the definition of a logarithm along with properties of logarithms to solve the formula for time $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ such that $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ is equal to a single logarithm.

$t=\mathrm{ln}\left({\left(\frac{y}{A}\right)}^{\frac{1}{k}}\right)$

Recall the compound interest formula $\text{\hspace{0.17em}}A=a{\left(1+\frac{r}{k}\right)}^{kt}.\text{\hspace{0.17em}}$ Use the definition of a logarithm along with properties of logarithms to solve the formula for time $\text{\hspace{0.17em}}t.$

Newton’s Law of Cooling states that the temperature $\text{\hspace{0.17em}}T\text{\hspace{0.17em}}$ of an object at any time t can be described by the equation $\text{\hspace{0.17em}}T={T}_{s}+\left({T}_{0}-{T}_{s}\right){e}^{-kt},$ where $\text{\hspace{0.17em}}{T}_{s}\text{\hspace{0.17em}}$ is the temperature of the surrounding environment, $\text{\hspace{0.17em}}{T}_{0}\text{\hspace{0.17em}}$ is the initial temperature of the object, and $\text{\hspace{0.17em}}k\text{}$ is the cooling rate. Use the definition of a logarithm along with properties of logarithms to solve the formula for time $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ such that $\text{\hspace{0.17em}}t\text{\hspace{0.17em}}$ is equal to a single logarithm.

$t=\mathrm{ln}\left({\left(\frac{T-{T}_{s}}{{T}_{0}-{T}_{s}}\right)}^{-\text{\hspace{0.17em}}\frac{1}{k}}\right)$

a colony of bacteria is growing exponentially doubling in size every 100 minutes. how much minutes will it take for the colony of bacteria to triple in size
I got 300 minutes. is it right?
Patience
no. should be about 150 minutes.
Jason
It should be 158.5 minutes.
Mr
ok, thanks
Patience
what is the importance knowing the graph of circular functions?
can get some help basic precalculus
What do you need help with?
Andrew
how to convert general to standard form with not perfect trinomial
can get some help inverse function
ismail
Rectangle coordinate
how to find for x
it depends on the equation
Robert
whats a domain
The domain of a function is the set of all input on which the function is defined. For example all real numbers are the Domain of any Polynomial function.
Spiro
foci (–7,–17) and (–7,17), the absolute value of the differenceof the distances of any point from the foci is 24.
difference between calculus and pre calculus?
give me an example of a problem so that I can practice answering
x³+y³+z³=42
Robert
dont forget the cube in each variable ;)
Robert
of she solves that, well ... then she has a lot of computational force under her command ....
Walter
what is a function?
I want to learn about the law of exponent
explain this
what is functions?
A mathematical relation such that every input has only one out.
Spiro
yes..it is a relationo of orders pairs of sets one or more input that leads to a exactly one output.
Mubita
Is a rule that assigns to each element X in a set A exactly one element, called F(x), in a set B.
RichieRich
If the plane intersects the cone (either above or below) horizontally, what figure will be created?