<< Chapter < Page Chapter >> Page >

Evaluating compositions of the form f ( f −1 ( y )) and f −1 ( f ( x ))

For any trigonometric function, f ( f 1 ( y ) ) = y for all y in the proper domain for the given function. This follows from the definition of the inverse and from the fact that the range of f was defined to be identical to the domain of f 1 . However, we have to be a little more careful with expressions of the form f 1 ( f ( x ) ) .

Compositions of a trigonometric function and its inverse

sin ( sin 1 x ) = x for 1 x 1 cos ( cos 1 x ) = x for 1 x 1 tan ( tan 1 x ) = x for < x <


sin 1 ( sin x ) = x only for  π 2 x π 2 cos 1 ( cos x ) = x only for  0 x π tan 1 ( tan x ) = x only for  π 2 < x < π 2

Is it correct that sin 1 ( sin x ) = x ?

No. This equation is correct if x belongs to the restricted domain [ π 2 , π 2 ] , but sine is defined for all real input values, and for x outside the restricted interval, the equation is not correct because its inverse always returns a value in [ π 2 , π 2 ] . The situation is similar for cosine and tangent and their inverses. For example, sin 1 ( sin ( 3 π 4 ) ) = π 4 .

Given an expression of the form f −1 (f(θ)) where f ( θ ) = sin θ ,   cos θ ,  or  tan θ , evaluate.

  1. If θ is in the restricted domain of f ,  then  f 1 ( f ( θ ) ) = θ .
  2. If not, then find an angle ϕ within the restricted domain of f such that f ( ϕ ) = f ( θ ) . Then f 1 ( f ( θ ) ) = ϕ .

Using inverse trigonometric functions

Evaluate the following:

  1. sin 1 ( sin ( π 3 ) )
  2. sin 1 ( sin ( 2 π 3 ) )
  3. cos 1 ( cos ( 2 π 3 ) )
  4. cos 1 ( cos ( π 3 ) )
  1. π 3  is in  [ π 2 , π 2 ] , so sin 1 ( sin ( π 3 ) ) = π 3 .
  2. 2 π 3  is not in  [ π 2 , π 2 ] , but sin ( 2 π 3 ) = sin ( π 3 ) , so sin 1 ( sin ( 2 π 3 ) ) = π 3 .
  3. 2 π 3  is in  [ 0 , π ] , so cos 1 ( cos ( 2 π 3 ) ) = 2 π 3 .
  4. π 3  is not in  [ 0 , π ] , but cos ( π 3 ) = cos ( π 3 ) because cosine is an even function.
  5. π 3  is in  [ 0 , π ] , so cos 1 ( cos ( π 3 ) ) = π 3 .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Evaluate tan 1 ( tan ( π 8 ) ) and tan 1 ( tan ( 11 π 9 ) ) .

π 8 ; 2 π 9

Got questions? Get instant answers now!

Evaluating compositions of the form f −1 ( g ( x ))

Now that we can compose a trigonometric function with its inverse, we can explore how to evaluate a composition of a trigonometric function and the inverse of another trigonometric function. We will begin with compositions of the form f 1 ( g ( x ) ) . For special values of x , we can exactly evaluate the inner function and then the outer, inverse function. However, we can find a more general approach by considering the relation between the two acute angles of a right triangle where one is θ , making the other π 2 θ . Consider the sine and cosine of each angle of the right triangle in [link] .

An illustration of a right triangle with angles theta and pi/2 - theta. Opposite the angle theta and adjacent the angle pi/2-theta is the side a. Adjacent the angle theta and opposite the angle pi/2 - theta is the side b. The hypoteneuse is labeled c.
Right triangle illustrating the cofunction relationships

Because cos θ = b c = sin ( π 2 θ ) , we have sin 1 ( cos θ ) = π 2 θ if 0 θ π . If θ is not in this domain, then we need to find another angle that has the same cosine as θ and does belong to the restricted domain; we then subtract this angle from π 2 . Similarly, sin θ = a c = cos ( π 2 θ ) , so cos 1 ( sin θ ) = π 2 θ if π 2 θ π 2 . These are just the function-cofunction relationships presented in another way.

Given functions of the form sin 1 ( cos x ) and cos 1 ( sin x ) , evaluate them.

  1. If x  is in  [ 0 , π ] , then sin 1 ( cos x ) = π 2 x .
  2. If x  is not in  [ 0 , π ] , then find another angle y  in  [ 0 , π ] such that cos y = cos x .
    sin 1 ( cos x ) = π 2 y
  3. If x  is in  [ π 2 , π 2 ] , then cos 1 ( sin x ) = π 2 x .
  4. If x  is not in [ π 2 , π 2 ] , then find another angle y  in  [ π 2 , π 2 ] such that sin y = sin x .
    cos 1 ( sin x ) = π 2 y

Questions & Answers

what are you up to?
Mark Reply
nothing up todat yet
Miranda
hi
jai
hello
jai
Miranda Drice
jai
aap konsi country se ho
jai
which language is that
Miranda
I am living in india
jai
good
Miranda
what is the formula for calculating algebraic
Propessor Reply
I think the formula for calculating algebraic is the statement of the equality of two expression stimulate by a set of addition, multiplication, soustraction, division, raising to a power and extraction of Root. U believe by having those in the equation you will be in measure to calculate it
Miranda
state and prove Cayley hamilton therom
sita Reply
hello
Propessor
hi
Miranda
the Cayley hamilton Theorem state if A is a square matrix and if f(x) is its characterics polynomial then f(x)=0 in another ways evey square matrix is a root of its chatacteristics polynomial.
Miranda
hi
jai
hi Miranda
jai
thanks
Propessor
welcome
jai
What is algebra
Pearl Reply
algebra is a branch of the mathematics to calculate expressions follow.
Miranda
Miranda Drice would you mind teaching me mathematics? I think you are really good at math. I'm not good at it. In fact I hate it. 😅😅😅
Jeffrey
lolll who told you I'm good at it
Miranda
something seems to wispher me to my ear that u are good at it. lol
Jeffrey
lolllll if you say so
Miranda
but seriously, Im really bad at math. And I hate it. But you see, I downloaded this app two months ago hoping to master it.
Jeffrey
which grade are you in though
Miranda
oh woww I understand
Miranda
haha. already finished college
Jeffrey
how about you? what grade are you now?
Jeffrey
I'm going to 11grade
Miranda
how come you finished in college and you don't like math though
Miranda
gotta practice, holmie
Steve
if you never use it you won't be able to appreciate it
Steve
I don't know why. But Im trying to like it.
Jeffrey
yes steve. you're right
Jeffrey
so you better
Miranda
what is the solution of the given equation?
Nelson Reply
which equation
Miranda
I dont know. lol
Jeffrey
please where is the equation
Miranda
ask nelson. lol
Jeffrey
answer and questions in exercise 11.2 sums
Yp Reply
how do u calculate inequality of irrational number?
Alaba
give me an example
Chris
and I will walk you through it
Chris
cos (-z)= cos z .
Swadesh
cos(- z)=cos z
Mustafa
what is a algebra
Jallah Reply
(x+x)3=?
Narad
6x
Obed
what is the identity of 1-cos²5x equal to?
liyemaikhaya Reply
__john __05
Kishu
Hi
Abdel
hi
Ye
hi
Nokwanda
C'est comment
Abdel
Hi
Amanda
hello
SORIE
Hiiii
Chinni
hello
Ranjay
hi
ANSHU
hiiii
Chinni
h r u friends
Chinni
yes
Hassan
so is their any Genius in mathematics here let chat guys and get to know each other's
SORIE
I speak French
Abdel
okay no problem since we gather here and get to know each other
SORIE
hi im stupid at math and just wanna join here
Yaona
lol nahhh none of us here are stupid it's just that we have Fast, Medium, and slow learner bro but we all going to work things out together
SORIE
it's 12
what is the function of sine with respect of cosine , graphically
Karl Reply
tangent bruh
Steve
cosx.cos2x.cos4x.cos8x
Aashish Reply
sinx sin2x is linearly dependent
cr Reply
what is a reciprocal
Ajibola Reply
The reciprocal of a number is 1 divided by a number. eg the reciprocal of 10 is 1/10 which is 0.1
Shemmy
 Reciprocal is a pair of numbers that, when multiplied together, equal to 1. Example; the reciprocal of 3 is ⅓, because 3 multiplied by ⅓ is equal to 1
Jeza
each term in a sequence below is five times the previous term what is the eighth term in the sequence
Funmilola Reply
I don't understand how radicals works pls
Kenny Reply
How look for the general solution of a trig function
collins Reply
Practice Key Terms 6

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask