<< Chapter < Page
  Precalculus   Page 1 / 1
Chapter >> Page >
Escherichia coli (e Coli) bacteria
Electron micrograph of E.Coli bacteria (credit: “Mattosaurus,” Wikimedia Commons)

Focus in on a square centimeter of your skin. Look closer. Closer still. If you could look closely enough, you would see hundreds of thousands of microscopic organisms. They are bacteria, and they are not only on your skin, but in your mouth, nose, and even your intestines. In fact, the bacterial cells in your body at any given moment outnumber your own cells. But that is no reason to feel bad about yourself. While some bacteria can cause illness, many are healthy and even essential to the body.

Bacteria commonly reproduce through a process called binary fission, during which one bacterial cell splits into two. When conditions are right, bacteria can reproduce very quickly. Unlike humans and other complex organisms, the time required to form a new generation of bacteria is often a matter of minutes or hours, as opposed to days or years. Todar, PhD, Kenneth. Todar's Online Textbook of Bacteriology. http://textbookofbacteriology.net/growth_3.html.

For simplicity’s sake, suppose we begin with a culture of one bacterial cell that can divide every hour. [link] shows the number of bacterial cells at the end of each subsequent hour. We see that the single bacterial cell leads to over one thousand bacterial cells in just ten hours! And if we were to extrapolate the table to twenty-four hours, we would have over 16 million!

Hour 0 1 2 3 4 5 6 7 8 9 10
Bacteria 1 2 4 8 16 32 64 128 256 512 1024

In this chapter, we will explore exponential functions, which can be used for, among other things, modeling growth patterns such as those found in bacteria. We will also investigate logarithmic functions, which are closely related to exponential functions. Both types of functions have numerous real-world applications when it comes to modeling and interpreting data.

Questions & Answers

what is set?
Kelvin Reply
a colony of bacteria is growing exponentially doubling in size every 100 minutes. how much minutes will it take for the colony of bacteria to triple in size
Divya Reply
I got 300 minutes. is it right?
no. should be about 150 minutes.
It should be 158.5 minutes.
ok, thanks
100•3=300 300=50•2^x 6=2^x x=log_2(6) =2.5849625 so, 300=50•2^2.5849625 and, so, the # of bacteria will double every (100•2.5849625) = 258.49625 minutes
what is the importance knowing the graph of circular functions?
Arabella Reply
can get some help basic precalculus
ismail Reply
What do you need help with?
how to convert general to standard form with not perfect trinomial
Camalia Reply
can get some help inverse function
Rectangle coordinate
Asma Reply
how to find for x
Jhon Reply
it depends on the equation
yeah, it does. why do we attempt to gain all of them one side or the other?
whats a domain
mike Reply
The domain of a function is the set of all input on which the function is defined. For example all real numbers are the Domain of any Polynomial function.
Spiro; thanks for putting it out there like that, 😁
foci (–7,–17) and (–7,17), the absolute value of the differenceof the distances of any point from the foci is 24.
Churlene Reply
difference between calculus and pre calculus?
Asma Reply
give me an example of a problem so that I can practice answering
Jenefa Reply
dont forget the cube in each variable ;)
of she solves that, well ... then she has a lot of computational force under her command ....
what is a function?
CJ Reply
I want to learn about the law of exponent
Quera Reply
explain this
Hinderson Reply
what is functions?
Angel Reply
A mathematical relation such that every input has only one out.
yes..it is a relationo of orders pairs of sets one or more input that leads to a exactly one output.
Is a rule that assigns to each element X in a set A exactly one element, called F(x), in a set B.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now

Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?