# 9.7 Solving systems with inverses  (Page 6/8)

 Page 6 / 8

## Algebraic

In the following exercises, show that matrix $\text{\hspace{0.17em}}A\text{\hspace{0.17em}}$ is the inverse of matrix $\text{\hspace{0.17em}}B.$

$A=\left[\begin{array}{cc}1& 0\\ -1& 1\end{array}\right],\text{\hspace{0.17em}}B=\left[\begin{array}{cc}1& 0\\ 1& 1\end{array}\right]$

$A=\left[\begin{array}{cc}1& 2\\ 3& 4\end{array}\right],\text{\hspace{0.17em}}B=\left[\begin{array}{cc}-2& 1\\ \frac{3}{2}& -\frac{1}{2}\end{array}\right]$

$AB=BA=\left[\begin{array}{cc}1& 0\\ 0& 1\end{array}\right]=I$

$A=\left[\begin{array}{cc}4& 5\\ 7& 0\end{array}\right],\text{\hspace{0.17em}}B=\left[\begin{array}{cc}0& \frac{1}{7}\\ \frac{1}{5}& -\frac{4}{35}\end{array}\right]$

$A=\left[\begin{array}{cc}-2& \frac{1}{2}\\ 3& -1\end{array}\right],\text{\hspace{0.17em}}B=\left[\begin{array}{cc}-2& -1\\ -6& -4\end{array}\right]$

$AB=BA=\left[\begin{array}{cc}1& 0\\ 0& 1\end{array}\right]=I$

$A=\left[\begin{array}{ccc}1& 0& 1\\ 0& 1& -1\\ 0& 1& 1\end{array}\right],\text{\hspace{0.17em}}B=\frac{1}{2}\left[\begin{array}{ccc}2& 1& -1\\ 0& 1& 1\\ 0& -1& 1\end{array}\right]$

$A=\left[\begin{array}{ccc}1& 2& 3\\ 4& 0& 2\\ 1& 6& 9\end{array}\right],\text{\hspace{0.17em}}B=\frac{1}{4}\left[\begin{array}{ccc}6& 0& -2\\ 17& -3& -5\\ -12& 2& 4\end{array}\right]$

$AB=BA=\left[\begin{array}{ccc}1& 0& 0\\ 0& 1& 0\\ 0& 0& 1\end{array}\right]=I$

$A=\left[\begin{array}{ccc}3& 8& 2\\ 1& 1& 1\\ 5& 6& 12\end{array}\right],\text{\hspace{0.17em}}B=\frac{1}{36}\left[\begin{array}{ccc}-6& 84& -6\\ 7& -26& 1\\ -1& -22& 5\end{array}\right]$

For the following exercises, find the multiplicative inverse of each matrix, if it exists.

$\left[\begin{array}{cc}3& -2\\ 1& 9\end{array}\right]$

$\frac{1}{29}\left[\begin{array}{cc}9& 2\\ -1& 3\end{array}\right]$

$\left[\begin{array}{cc}-2& 2\\ 3& 1\end{array}\right]$

$\left[\begin{array}{cc}-3& 7\\ 9& 2\end{array}\right]$

$\frac{1}{69}\left[\begin{array}{cc}-2& 7\\ 9& 3\end{array}\right]$

$\left[\begin{array}{cc}-4& -3\\ -5& 8\end{array}\right]$

$\left[\begin{array}{cc}1& 1\\ 2& 2\end{array}\right]$

There is no inverse

$\left[\begin{array}{cc}0& 1\\ 1& 0\end{array}\right]$

$\left[\begin{array}{cc}0.5& 1.5\\ 1& -0.5\end{array}\right]$

$\frac{4}{7}\left[\begin{array}{cc}0.5& 1.5\\ 1& -0.5\end{array}\right]$

$\left[\begin{array}{ccc}1& 0& 6\\ -2& 1& 7\\ 3& 0& 2\end{array}\right]$

$\left[\begin{array}{ccc}0& 1& -3\\ 4& 1& 0\\ 1& 0& 5\end{array}\right]$

$\frac{1}{17}\left[\begin{array}{ccc}-5& 5& -3\\ 20& -3& 12\\ 1& -1& 4\end{array}\right]$

$\left[\begin{array}{ccc}1& 2& -1\\ -3& 4& 1\\ -2& -4& -5\end{array}\right]$

$\left[\begin{array}{ccc}1& 9& -3\\ 2& 5& 6\\ 4& -2& 7\end{array}\right]$

$\frac{1}{209}\left[\begin{array}{ccc}47& -57& 69\\ 10& 19& -12\\ -24& 38& -13\end{array}\right]$

$\left[\begin{array}{ccc}1& -2& 3\\ -4& 8& -12\\ 1& 4& 2\end{array}\right]$

$\left[\begin{array}{ccc}\frac{1}{2}& \frac{1}{2}& \frac{1}{2}\\ \frac{1}{3}& \frac{1}{4}& \frac{1}{5}\\ \frac{1}{6}& \frac{1}{7}& \frac{1}{8}\end{array}\right]$

$\left[\begin{array}{ccc}18& 60& -168\\ -56& -140& 448\\ 40& 80& -280\end{array}\right]$

$\left[\begin{array}{ccc}1& 2& 3\\ 4& 5& 6\\ 7& 8& 9\end{array}\right]$

For the following exercises, solve the system using the inverse of a $\text{\hspace{0.17em}}2\text{\hspace{0.17em}}×\text{\hspace{0.17em}}2\text{\hspace{0.17em}}$ matrix.

$\left(-5,6\right)$

$\begin{array}{l}8x+4y=-100\\ 3x-4y=1\end{array}$

$\begin{array}{l}\text{\hspace{0.17em}}3x-2y=6\hfill \\ -x+5y=-2\hfill \end{array}$

$\left(2,0\right)$

$\begin{array}{l}5x-4y=-5\hfill \\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}4x+y=2.3\hfill \end{array}$

$\begin{array}{l}-3x-4y=9\hfill \\ \text{\hspace{0.17em}}12x+4y=-6\hfill \end{array}$

$\left(\frac{1}{3},-\frac{5}{2}\right)$

$\begin{array}{l}-2x+3y=\frac{3}{10}\hfill \\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}-x+5y=\frac{1}{2}\hfill \end{array}$

$\begin{array}{l}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\frac{8}{5}x-\frac{4}{5}y=\frac{2}{5}\hfill \\ -\frac{8}{5}x+\frac{1}{5}y=\frac{7}{10}\hfill \end{array}$

$\left(-\frac{2}{3},-\frac{11}{6}\right)$

$\begin{array}{l}\frac{1}{2}x+\frac{1}{5}y=-\frac{1}{4}\\ \frac{1}{2}x-\frac{3}{5}y=-\frac{9}{4}\end{array}$

For the following exercises, solve a system using the inverse of a $\text{\hspace{0.17em}}3\text{}×\text{}3\text{\hspace{0.17em}}$ matrix.

$\begin{array}{l}3x-2y+5z=21\hfill \\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}5x+4y=37\hfill \\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}x-2y-5z=5\hfill \end{array}$

$\left(7,\frac{1}{2},\frac{1}{5}\right)$

$\left(5,0,-1\right)$

$\begin{array}{l}6x-5y+2z=-4\hfill \\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}2x+5y-z=12\hfill \\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}2x+5y+z=12\hfill \end{array}$

$\begin{array}{l}4x-2y+3z=-12\hfill \\ 2x+2y-9z=33\hfill \\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}6y-4z=1\hfill \end{array}$

$\frac{1}{34}\left(-35,-97,-154\right)$

$\begin{array}{l}\frac{1}{10}x-\frac{1}{5}y+4z=\frac{-41}{2}\\ \frac{1}{5}x-20y+\frac{2}{5}z=-101\\ \frac{3}{10}x+4y-\frac{3}{10}z=23\end{array}$

$\begin{array}{l}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\frac{1}{2}x-\frac{1}{5}y+\frac{1}{5}z=\frac{31}{100}\hfill \\ -\frac{3}{4}x-\frac{1}{4}y+\frac{1}{2}z=\frac{7}{40}\hfill \\ -\frac{4}{5}x-\frac{1}{2}y+\frac{3}{2}z=\frac{1}{4}\hfill \end{array}$

$\frac{1}{690}\left(65,-1136,-229\right)$

$\begin{array}{l}0.1x+0.2y+0.3z=-1.4\hfill \\ 0.1x-0.2y+0.3z=0.6\hfill \\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}0.4y+0.9z=-2\hfill \end{array}$

## Technology

For the following exercises, use a calculator to solve the system of equations with matrix inverses.

$\begin{array}{l}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}2x-y=-3\hfill \\ -x+2y=2.3\hfill \end{array}$

$\left(-\frac{37}{30},\frac{8}{15}\right)$

$\begin{array}{l}-\frac{1}{2}x-\frac{3}{2}y=-\frac{43}{20}\hfill \\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\frac{5}{2}x+\frac{11}{5}y=\frac{31}{4}\hfill \end{array}$

$\begin{array}{l}12.3x-2y-2.5z=2\hfill \\ 36.9x+7y-7.5z=-7\hfill \\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}8y-5z=-10\hfill \end{array}$

$\left(\frac{10}{123},-1,\frac{2}{5}\right)$

$\begin{array}{l}0.5x-3y+6z=-0.8\hfill \\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}0.7x-2y=-0.06\hfill \\ 0.5x+4y+5z=0\hfill \end{array}$

## Extensions

For the following exercises, find the inverse of the given matrix.

$\left[\begin{array}{cccc}1& 0& 1& 0\\ 0& 1& 0& 1\\ 0& 1& 1& 0\\ 0& 0& 1& 1\end{array}\right]$

$\frac{1}{2}\left[\begin{array}{rrrr}\hfill 2& \hfill 1& \hfill -1& \hfill -1\\ \hfill 0& \hfill 1& \hfill 1& \hfill -1\\ \hfill 0& \hfill -1& \hfill 1& \hfill 1\\ \hfill 0& \hfill 1& \hfill -1& \hfill 1\end{array}\right]$

$\left[\begin{array}{rrrr}\hfill -1& \hfill 0& \hfill 2& \hfill 5\\ \hfill 0& \hfill 0& \hfill 0& \hfill 2\\ \hfill 0& \hfill 2& \hfill -1& \hfill 0\\ \hfill 1& \hfill -3& \hfill 0& \hfill 1\end{array}\right]$

$\left[\begin{array}{rrrr}\hfill 1& \hfill -2& \hfill 3& \hfill 0\\ \hfill 0& \hfill 1& \hfill 0& \hfill 2\\ \hfill 1& \hfill 4& \hfill -2& \hfill 3\\ \hfill -5& \hfill 0& \hfill 1& \hfill 1\end{array}\right]$

$\frac{1}{39}\left[\begin{array}{rrrr}\hfill 3& \hfill 2& \hfill 1& \hfill -7\\ \hfill 18& \hfill -53& \hfill 32& \hfill 10\\ \hfill 24& \hfill -36& \hfill 21& \hfill 9\\ \hfill -9& \hfill 46& \hfill -16& \hfill -5\end{array}\right]$

$\left[\begin{array}{rrrrr}\hfill 1& \hfill 2& \hfill 0& \hfill 2& \hfill 3\\ \hfill 0& \hfill 2& \hfill 1& \hfill 0& \hfill 0\\ \hfill 0& \hfill 0& \hfill 3& \hfill 0& \hfill 1\\ \hfill 0& \hfill 2& \hfill 0& \hfill 0& \hfill 1\\ \hfill 0& \hfill 0& \hfill 1& \hfill 2& \hfill 0\end{array}\right]$

$\left[\begin{array}{rrrrrr}\hfill 1& \hfill 0& \hfill 0& \hfill 0& \hfill 0& \hfill 0\\ \hfill 0& \hfill 1& \hfill 0& \hfill 0& \hfill 0& \hfill 0\\ \hfill 0& \hfill 0& \hfill 1& \hfill 0& \hfill 0& \hfill 0\\ \hfill 0& \hfill 0& \hfill 0& \hfill 1& \hfill 0& \hfill 0\\ \hfill 0& \hfill 0& \hfill 0& \hfill 0& \hfill 1& \hfill 0\\ \hfill 1& \hfill 1& \hfill 1& \hfill 1& \hfill 1& \hfill 1\end{array}\right]$

$\left[\begin{array}{rrrrrr}\hfill 1& \hfill 0& \hfill 0& \hfill 0& \hfill 0& \hfill 0\\ \hfill 0& \hfill 1& \hfill 0& \hfill 0& \hfill 0& \hfill 0\\ \hfill 0& \hfill 0& \hfill 1& \hfill 0& \hfill 0& \hfill 0\\ \hfill 0& \hfill 0& \hfill 0& \hfill 1& \hfill 0& \hfill 0\\ \hfill 0& \hfill 0& \hfill 0& \hfill 0& \hfill 1& \hfill 0\\ \hfill -1& \hfill -1& \hfill -1& \hfill -1& \hfill -1& \hfill 1\end{array}\right]$

## Real-world applications

For the following exercises, write a system of equations that represents the situation. Then, solve the system using the inverse of a matrix.

2,400 tickets were sold for a basketball game. If the prices for floor 1 and floor 2 were different, and the total amount of money brought in is $64,000, how much was the price of each ticket? In the previous exercise, if you were told there were 400 more tickets sold for floor 2 than floor 1, how much was the price of each ticket? Infinite solutions. A food drive collected two different types of canned goods, green beans and kidney beans. The total number of collected cans was 350 and the total weight of all donated food was 348 lb, 12 oz. If the green bean cans weigh 2 oz less than the kidney bean cans, how many of each can was donated? Students were asked to bring their favorite fruit to class. 95% of the fruits consisted of banana, apple, and oranges. If oranges were twice as popular as bananas, and apples were 5% less popular than bananas, what are the percentages of each individual fruit? 50% oranges, 25% bananas, 20% apples A sorority held a bake sale to raise money and sold brownies and chocolate chip cookies. They priced the brownies at$1 and the chocolate chip cookies at $0.75. They raised$700 and sold 850 items. How many brownies and how many cookies were sold?

A clothing store needs to order new inventory. It has three different types of hats for sale: straw hats, beanies, and cowboy hats. The straw hat is priced at $13.99, the beanie at$7.99, and the cowboy hat at $14.49. If 100 hats were sold this past quarter,$1,119 was taken in by sales, and the amount of beanies sold was 10 more than cowboy hats, how many of each should the clothing store order to replace those already sold?

10 straw hats, 50 beanies, 40 cowboy hats

Anna, Ashley, and Andrea weigh a combined 370 lb. If Andrea weighs 20 lb more than Ashley, and Anna weighs 1.5 times as much as Ashley, how much does each girl weigh?

Three roommates shared a package of 12 ice cream bars, but no one remembers who ate how many. If Tom ate twice as many ice cream bars as Joe, and Albert ate three less than Tom, how many ice cream bars did each roommate eat?

Tom ate 6, Joe ate 3, and Albert ate 3.

A farmer constructed a chicken coop out of chicken wire, wood, and plywood. The chicken wire cost $2 per square foot, the wood$10 per square foot, and the plywood $5 per square foot. The farmer spent a total of$51, and the total amount of materials used was He used more chicken wire than plywood. How much of each material in did the farmer use?

Jay has lemon, orange, and pomegranate trees in his backyard. An orange weighs 8 oz, a lemon 5 oz, and a pomegranate 11 oz. Jay picked 142 pieces of fruit weighing a total of 70 lb, 10 oz. He picked 15.5 times more oranges than pomegranates. How many of each fruit did Jay pick?

124 oranges, 10 lemons, 8 pomegranates

#### Questions & Answers

x=-b+_Гb2-(4ac) ______________ 2a
I've run into this: x = r*cos(angle1 + angle2) Which expands to: x = r(cos(angle1)*cos(angle2) - sin(angle1)*sin(angle2)) The r value confuses me here, because distributing it makes: (r*cos(angle2))(cos(angle1) - (r*sin(angle2))(sin(angle1)) How does this make sense? Why does the r distribute once
so good
abdikarin
this is an identity when 2 adding two angles within a cosine. it's called the cosine sum formula. there is also a different formula when cosine has an angle minus another angle it's called the sum and difference formulas and they are under any list of trig identities
How can you tell what type of parent function a graph is ?
generally by how the graph looks and understanding what the base parent functions look like and perform on a graph
William
if you have a graphed line, you can have an idea by how the directions of the line turns, i.e. negative, positive, zero
William
y=x will obviously be a straight line with a zero slope
William
y=x^2 will have a parabolic line opening to positive infinity on both sides of the y axis vice versa with y=-x^2 you'll have both ends of the parabolic line pointing downward heading to negative infinity on both sides of the y axis
William
y=x will be a straight line, but it will have a slope of one. Remember, if y=1 then x=1, so for every unit you rise you move over positively one unit. To get a straight line with a slope of 0, set y=1 or any integer.
Aaron
yes, correction on my end, I meant slope of 1 instead of slope of 0
William
what is f(x)=
I don't understand
Joe
Typically a function 'f' will take 'x' as input, and produce 'y' as output. As 'f(x)=y'. According to Google, "The range of a function is the complete set of all possible resulting values of the dependent variable (y, usually), after we have substituted the domain."
Thomas
Sorry, I don't know where the "Â"s came from. They shouldn't be there. Just ignore them. :-)
Thomas
Darius
Thanks.
Thomas
Â
Thomas
It is the Â that should not be there. It doesn't seem to show if encloses in quotation marks. "Â" or 'Â' ... Â
Thomas
Now it shows, go figure?
Thomas
what is this?
i do not understand anything
unknown
lol...it gets better
Darius
I've been struggling so much through all of this. my final is in four weeks 😭
Tiffany
this book is an excellent resource! have you guys ever looked at the online tutoring? there's one that is called "That Tutor Guy" and he goes over a lot of the concepts
Darius
thank you I have heard of him. I should check him out.
Tiffany
is there any question in particular?
Joe
I have always struggled with math. I get lost really easy, if you have any advice for that, it would help tremendously.
Tiffany
Sure, are you in high school or college?
Darius
Hi, apologies for the delayed response. I'm in college.
Tiffany
how to solve polynomial using a calculator
So a horizontal compression by factor of 1/2 is the same as a horizontal stretch by a factor of 2, right?
The center is at (3,4) a focus is at (3,-1), and the lenght of the major axis is 26
The center is at (3,4) a focus is at (3,-1) and the lenght of the major axis is 26 what will be the answer?
Rima
I done know
Joe
What kind of answer is that😑?
Rima
I had just woken up when i got this message
Joe
Can you please help me. Tomorrow is the deadline of my assignment then I don't know how to solve that
Rima
i have a question.
Abdul
how do you find the real and complex roots of a polynomial?
Abdul
@abdul with delta maybe which is b(square)-4ac=result then the 1st root -b-radical delta over 2a and the 2nd root -b+radical delta over 2a. I am not sure if this was your question but check it up
Nare
This is the actual question: Find all roots(real and complex) of the polynomial f(x)=6x^3 + x^2 - 4x + 1
Abdul
@Nare please let me know if you can solve it.
Abdul
I have a question
juweeriya
hello guys I'm new here? will you happy with me
mustapha
The average annual population increase of a pack of wolves is 25.
how do you find the period of a sine graph
Period =2π if there is a coefficient (b), just divide the coefficient by 2π to get the new period
Am
if not then how would I find it from a graph
Imani
by looking at the graph, find the distance between two consecutive maximum points (the highest points of the wave). so if the top of one wave is at point A (1,2) and the next top of the wave is at point B (6,2), then the period is 5, the difference of the x-coordinates.
Am
you could also do it with two consecutive minimum points or x-intercepts
Am
I will try that thank u
Imani
Case of Equilateral Hyperbola
ok
Zander
ok
Shella
f(x)=4x+2, find f(3)
Benetta
f(3)=4(3)+2 f(3)=14
lamoussa
14
Vedant
pre calc teacher: "Plug in Plug in...smell's good" f(x)=14
Devante
8x=40
Chris
Explain why log a x is not defined for a < 0
the sum of any two linear polynomial is what
divide simplify each answer 3/2÷5/4
divide simplify each answer 25/3÷5/12
Momo
how can are find the domain and range of a relations
the range is twice of the natural number which is the domain
Morolake