# 9.7 Solving systems with inverses  (Page 4/8)

 Page 4 / 8

The only difference between a solving a linear equation and a system of equations written in matrix form is that finding the inverse of a matrix is more complicated, and matrix multiplication is a longer process. However, the goal is the same—to isolate the variable.

We will investigate this idea in detail, but it is helpful to begin with a $\text{\hspace{0.17em}}2\text{\hspace{0.17em}}×\text{\hspace{0.17em}}2\text{\hspace{0.17em}}$ system and then move on to a $\text{\hspace{0.17em}}3\text{\hspace{0.17em}}×\text{\hspace{0.17em}}3\text{\hspace{0.17em}}$ system.

## Solving a system of equations using the inverse of a matrix

Given a system of equations, write the coefficient matrix $\text{\hspace{0.17em}}A,\text{\hspace{0.17em}}$ the variable matrix $\text{\hspace{0.17em}}X,\text{\hspace{0.17em}}$ and the constant matrix $\text{\hspace{0.17em}}B.\text{\hspace{0.17em}}$ Then

$AX=B$

Multiply both sides by the inverse of $\text{\hspace{0.17em}}A\text{\hspace{0.17em}}$ to obtain the solution.

$\begin{array}{r}\hfill \left({A}^{-1}\right)AX=\left({A}^{-1}\right)B\\ \hfill \left[\left({A}^{-1}\right)A\right]X=\left({A}^{-1}\right)B\\ \hfill IX=\left({A}^{-1}\right)B\\ \hfill X=\left({A}^{-1}\right)B\end{array}$

If the coefficient matrix does not have an inverse, does that mean the system has no solution?

No, if the coefficient matrix is not invertible, the system could be inconsistent and have no solution, or be dependent and have infinitely many solutions.

## Solving a 2 × 2 system using the inverse of a matrix

Solve the given system of equations using the inverse of a matrix.

$\begin{array}{r}\hfill 3x+8y=5\\ \hfill 4x+11y=7\end{array}$

Write the system in terms of a coefficient matrix, a variable matrix, and a constant matrix.

$A=\left[\begin{array}{cc}3& 8\\ 4& 11\end{array}\right],X=\left[\begin{array}{c}x\\ y\end{array}\right],B=\left[\begin{array}{c}5\\ 7\end{array}\right]$

Then

First, we need to calculate $\text{\hspace{0.17em}}{A}^{-1}.\text{\hspace{0.17em}}$ Using the formula to calculate the inverse of a 2 by 2 matrix, we have:

So,

${A}^{-1}=\left[\begin{array}{cc}11& -8\\ -4& \text{​}\text{​}\text{\hspace{0.17em}}\text{\hspace{0.17em}}3\end{array}\right]$

Now we are ready to solve. Multiply both sides of the equation by $\text{\hspace{0.17em}}{A}^{-1}.$

The solution is $\text{\hspace{0.17em}}\left(-1,1\right).$

Can we solve for $\text{\hspace{0.17em}}X\text{\hspace{0.17em}}$ by finding the product $\text{\hspace{0.17em}}B{A}^{-1}?$

No, recall that matrix multiplication is not commutative, so $\text{\hspace{0.17em}}{A}^{-1}B\ne B{A}^{-1}.\text{\hspace{0.17em}}$ Consider our steps for solving the matrix equation.

$\begin{array}{r}\hfill \left({A}^{-1}\right)AX=\left({A}^{-1}\right)B\\ \hfill \left[\left({A}^{-1}\right)A\right]X=\left({A}^{-1}\right)B\\ \hfill IX=\left({A}^{-1}\right)B\\ \hfill X=\left({A}^{-1}\right)B\end{array}$

Notice in the first step we multiplied both sides of the equation by $\text{\hspace{0.17em}}{A}^{-1},\text{\hspace{0.17em}}$ but the $\text{\hspace{0.17em}}{A}^{-1}\text{\hspace{0.17em}}$ was to the left of $\text{\hspace{0.17em}}A\text{\hspace{0.17em}}$ on the left side and to the left of $\text{\hspace{0.17em}}B\text{\hspace{0.17em}}$ on the right side. Because matrix multiplication is not commutative, order matters.

## Solving a 3 × 3 system using the inverse of a matrix

Solve the following system using the inverse of a matrix.

$\begin{array}{r}\hfill 5x+15y+56z=35\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\\ \hfill -4x-11y-41z=-26\\ \hfill -x-3y-11z=-7\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\end{array}$

Write the equation $\text{\hspace{0.17em}}AX=B.\text{\hspace{0.17em}}$

First, we will find the inverse of $\text{\hspace{0.17em}}A\text{\hspace{0.17em}}$ by augmenting with the identity.

$\left[\begin{array}{rrr}\hfill 5& \hfill 15& \hfill 56\\ \hfill -4& \hfill -11& \hfill -41\\ \hfill -1& \hfill -3& \hfill -11\end{array}\text{\hspace{0.17em}}\text{\hspace{0.17em}}|\text{\hspace{0.17em}}\text{\hspace{0.17em}}\begin{array}{ccc}1& 0& 0\\ 0& 1& 0\\ 0& 0& 1\end{array}\right]$

Multiply row 1 by $\text{\hspace{0.17em}}\frac{1}{5}.$

$\left[\begin{array}{ccc}1& 3& \frac{56}{5}\\ -4& -11& -41\\ -1& -3& -11\end{array}\text{\hspace{0.17em}}\text{\hspace{0.17em}}|\text{\hspace{0.17em}}\text{\hspace{0.17em}}\begin{array}{ccc}\frac{1}{5}& 0& 0\\ 0& 1& 0\\ 0& 0& 1\end{array}\right]$

Multiply row 1 by 4 and add to row 2.

$\left[\begin{array}{ccc}1& 3& \frac{56}{5}\\ 0& 1& \frac{19}{5}\\ -1& -3& -11\end{array}\text{\hspace{0.17em}}\text{\hspace{0.17em}}|\text{\hspace{0.17em}}\text{\hspace{0.17em}}\begin{array}{ccc}\frac{1}{5}& 0& 0\\ \frac{4}{5}& 1& 0\\ 0& 0& 1\end{array}\right]$

Add row 1 to row 3.

$\left[\begin{array}{ccc}1& 3& \frac{56}{5}\\ 0& 1& \frac{19}{5}\\ 0& 0& \frac{1}{5}\end{array}\text{\hspace{0.17em}}\text{\hspace{0.17em}}|\text{\hspace{0.17em}}\text{\hspace{0.17em}}\begin{array}{ccc}\frac{1}{5}& 0& 0\\ \frac{4}{5}& 1& 0\\ \frac{1}{5}& 0& 1\end{array}\right]$

Multiply row 2 by −3 and add to row 1.

$\left[\begin{array}{ccc}1& 0& -\frac{1}{5}\\ 0& 1& \frac{19}{5}\\ 0& 0& \frac{1}{5}\end{array}\text{\hspace{0.17em}}\text{\hspace{0.17em}}|\text{\hspace{0.17em}}\text{\hspace{0.17em}}\begin{array}{ccc}-\frac{11}{5}& -3& 0\\ \frac{4}{5}& 1& 0\\ \frac{1}{5}& 0& 1\end{array}\right]$

Multiply row 3 by 5.

$\left[\begin{array}{ccc}1& 0& -\frac{1}{5}\\ 0& 1& \frac{19}{5}\\ 0& 0& 1\end{array}\text{\hspace{0.17em}}\text{\hspace{0.17em}}|\text{\hspace{0.17em}}\text{\hspace{0.17em}}\begin{array}{ccc}-\frac{11}{5}& -3& 0\\ \frac{4}{5}& 1& 0\\ 1& 0& 5\end{array}\right]$

Multiply row 3 by $\text{\hspace{0.17em}}\frac{1}{5}\text{\hspace{0.17em}}$ and add to row 1.

$\left[\begin{array}{ccc}1& 0& 0\\ 0& 1& \frac{19}{5}\\ 0& 0& 1\end{array}\text{\hspace{0.17em}}\text{\hspace{0.17em}}|\text{\hspace{0.17em}}\text{\hspace{0.17em}}\begin{array}{ccc}-2& -3& 1\\ \frac{4}{5}& 1& 0\\ 1& 0& 5\end{array}\right]$

Multiply row 3 by $\text{\hspace{0.17em}}-\frac{19}{5}\text{\hspace{0.17em}}$ and add to row 2.

$\left[\begin{array}{ccc}1& 0& 0\\ 0& 1& 0\\ 0& 0& 1\end{array}\text{\hspace{0.17em}}\text{\hspace{0.17em}}|\text{\hspace{0.17em}}\text{\hspace{0.17em}}\begin{array}{ccc}-2& -3& 1\\ -3& 1& -19\\ 1& 0& 5\end{array}\right]$

So,

${A}^{-1}=\left[\begin{array}{ccc}-2& -3& 1\\ -3& 1& -19\\ 1& 0& 5\end{array}\right]$

Multiply both sides of the equation by $\text{\hspace{0.17em}}{A}^{-1}.\text{\hspace{0.17em}}$ We want $\text{\hspace{0.17em}}{A}^{-1}AX={A}^{-1}B:$

Thus,

${A}^{-1}B=\left[\begin{array}{r}\hfill -70+78-7\\ \hfill -105-26+133\\ \hfill 35+0-35\end{array}\right]=\left[\begin{array}{c}1\\ 2\\ 0\end{array}\right]$

The solution is $\text{\hspace{0.17em}}\left(1,2,0\right).$

#### Questions & Answers

a colony of bacteria is growing exponentially doubling in size every 100 minutes. how much minutes will it take for the colony of bacteria to triple in size
I got 300 minutes. is it right?
Patience
no. should be about 150 minutes.
Jason
what is the importance knowing the graph of circular functions?
can get some help basic precalculus
What do you need help with?
Andrew
how to convert general to standard form with not perfect trinomial
can get some help inverse function
ismail
Rectangle coordinate
how to find for x
it depends on the equation
Robert
whats a domain
The domain of a function is the set of all input on which the function is defined. For example all real numbers are the Domain of any Polynomial function.
Spiro
foci (–7,–17) and (–7,17), the absolute value of the differenceof the distances of any point from the foci is 24.
difference between calculus and pre calculus?
give me an example of a problem so that I can practice answering
x³+y³+z³=42
Robert
dont forget the cube in each variable ;)
Robert
of she solves that, well ... then she has a lot of computational force under her command ....
Walter
what is a function?
I want to learn about the law of exponent
explain this
what is functions?
A mathematical relation such that every input has only one out.
Spiro
yes..it is a relationo of orders pairs of sets one or more input that leads to a exactly one output.
Mubita
Is a rule that assigns to each element X in a set A exactly one element, called F(x), in a set B.
RichieRich
If the plane intersects the cone (either above or below) horizontally, what figure will be created?