<< Chapter < Page Chapter >> Page >

Use the formula to find the inverse of matrix A . Verify your answer by augmenting with the identity matrix.

A = [ 1 −1 2 3 ]

A −1 = [ 3 5 1 5 2 5 1 5 ]

Got questions? Get instant answers now!

Finding the inverse of the matrix, if it exists

Find the inverse, if it exists, of the given matrix.

A = [ 3 6 1 2 ]

We will use the method of augmenting with the identity.

[ 3 6 1 3 | 1 0 0 1 ]
  1. Switch row 1 and row 2.
    [ 1 3 3 6 | 0 1 1 0 ]
  2. Multiply row 1 by −3 and add it to row 2.
    [ 1 2 0 0 | 1 0 −3 1 ]
  3. There is nothing further we can do. The zeros in row 2 indicate that this matrix has no inverse.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Finding the multiplicative inverse of 3×3 matrices

Unfortunately, we do not have a formula similar to the one for a 2 × 2 matrix to find the inverse of a 3 × 3 matrix. Instead, we will augment the original matrix with the identity matrix and use row operations    to obtain the inverse.

Given a 3 × 3 matrix

A = [ 2 3 1 3 3 1 2 4 1 ]

augment A with the identity matrix

A | I = [ 2 3 1 3 3 1 2 4 1    |    1 0 0 0 1 0 0 0 1 ]

To begin, we write the augmented matrix    with the identity on the right and A on the left. Performing elementary row operations    so that the identity matrix    appears on the left, we will obtain the inverse matrix on the right. We will find the inverse of this matrix in the next example.

Given a 3 × 3 matrix, find the inverse

  1. Write the original matrix augmented with the identity matrix on the right.
  2. Use elementary row operations so that the identity appears on the left.
  3. What is obtained on the right is the inverse of the original matrix.
  4. Use matrix multiplication to show that A A −1 = I and A −1 A = I .

Finding the inverse of a 3 × 3 matrix

Given the 3 × 3 matrix A , find the inverse.

A = [ 2 3 1 3 3 1 2 4 1 ]

Augment A with the identity matrix, and then begin row operations until the identity matrix replaces A . The matrix on the right will be the inverse of A .

[ 2 3 1 3 3 1 2 4 1 | 1 0 0 0 1 0 0 0 1 ] Interchange  R 2 and  R 1 [ 3 3 1 2 3 1 2 4 1 | 0 1 0 1 0 0 0 0 1 ]
R 2 + R 1 = R 1 [ 1 0 0 2 3 1 2 4 1 | −1 1 0 1 0 0 0 0 1 ]
R 2 + R 3 = R 3 [ 1 0 0 2 3 1 0 1 0 | −1 1 0 1 0 0 −1 0 1 ]
R 3   R 2 [ 1 0 0 0 1 0 2 3 1 | −1 1 0 −1 0 1 1 0 0 ]
−2 R 1 + R 3 = R 3 [ 1 0 0 0 1 0 0 3 1 | −1 1 0 −1 0 1 3 −2 0 ]
−3 R 2 + R 3 = R 3 [ 1 0 0 0 1 0 0 0 1 | −1 1 0 −1 0 1 6 −2 −3 ]

Thus,

A −1 = B = [ −1 1 0 −1 0 1 6 −2 −3 ]
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find the inverse of the 3 × 3 matrix.

A = [ 2 −17 11 −1 11 −7 0 3 −2 ]

A −1 = [ 1 1 2 2 4 −3 3 6 −5 ]

Got questions? Get instant answers now!

Solving a system of linear equations using the inverse of a matrix

Solving a system of linear equations using the inverse of a matrix requires the definition of two new matrices: X is the matrix representing the variables of the system, and B is the matrix representing the constants. Using matrix multiplication , we may define a system of equations with the same number of equations as variables as

A X = B

To solve a system of linear equations using an inverse matrix , let A be the coefficient matrix    , let X be the variable matrix, and let B be the constant matrix. Thus, we want to solve a system A X = B . For example, look at the following system of equations.

a 1 x + b 1 y = c 1 a 2 x + b 2 y = c 2

From this system, the coefficient matrix is

A = [ a 1 b 1 a 2 b 2 ]

The variable matrix is

X = [ x y ]

And the constant matrix is

B = [ c 1 c 2 ]

Then A X = B looks like

[ a 1 b 1 a 2 b 2 ]     [ x y ] = [ c 1 c 2 ]

Recall the discussion earlier in this section regarding multiplying a real number by its inverse, ( 2 −1 ) 2 = ( 1 2 ) 2 = 1. To solve a single linear equation a x = b for x , we would simply multiply both sides of the equation by the multiplicative inverse (reciprocal) of a . Thus,

Questions & Answers

difference between calculus and pre calculus?
Asma Reply
give me an example of a problem so that I can practice answering
Jenefa Reply
x³+y³+z³=42
Robert
dont forget the cube in each variable ;)
Robert
of she solves that, well ... then she has a lot of computational force under her command ....
Walter
what is a function?
CJ Reply
I want to learn about the law of exponent
Quera Reply
explain this
Hinderson Reply
what is functions?
Angel Reply
A mathematical relation such that every input has only one out.
Spiro
yes..it is a relationo of orders pairs of sets one or more input that leads to a exactly one output.
Mubita
Is a rule that assigns to each element X in a set A exactly one element, called F(x), in a set B.
RichieRich
If the plane intersects the cone (either above or below) horizontally, what figure will be created?
Feemark Reply
can you not take the square root of a negative number
Sharon Reply
No because a negative times a negative is a positive. No matter what you do you can never multiply the same number by itself and end with a negative
lurverkitten
Actually you can. you get what's called an Imaginary number denoted by i which is represented on the complex plane. The reply above would be correct if we were still confined to the "real" number line.
Liam
Suppose P= {-3,1,3} Q={-3,-2-1} and R= {-2,2,3}.what is the intersection
Elaine Reply
can I get some pretty basic questions
Ama Reply
In what way does set notation relate to function notation
Ama
is precalculus needed to take caculus
Amara Reply
It depends on what you already know. Just test yourself with some precalculus questions. If you find them easy, you're good to go.
Spiro
the solution doesn't seem right for this problem
Mars Reply
what is the domain of f(x)=x-4/x^2-2x-15 then
Conney Reply
x is different from -5&3
Seid
All real x except 5 and - 3
Spiro
***youtu.be/ESxOXfh2Poc
Loree
how to prroved cos⁴x-sin⁴x= cos²x-sin²x are equal
jeric Reply
Don't think that you can.
Elliott
By using some imaginary no.
Tanmay
how do you provided cos⁴x-sin⁴x = cos²x-sin²x are equal
jeric Reply
What are the question marks for?
Elliott
Practice Key Terms 2

Get the best Precalculus course in your pocket!





Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask