<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Solve linear trigonometric equations in sine and cosine.
  • Solve equations involving a single trigonometric function.
  • Solve trigonometric equations using a calculator.
  • Solve trigonometric equations that are quadratic in form.
  • Solve trigonometric equations using fundamental identities.
  • Solve trigonometric equations with multiple angles.
  • Solve right triangle problems.
Photo of the Egyptian pyramids near a modern city.
Egyptian pyramids standing near a modern city. (credit: Oisin Mulvihill)

Thales of Miletus (circa 625–547 BC) is known as the founder of geometry. The legend is that he calculated the height of the Great Pyramid of Giza in Egypt using the theory of similar triangles , which he developed by measuring the shadow of his staff. Based on proportions, this theory has applications in a number of areas, including fractal geometry, engineering, and architecture. Often, the angle of elevation and the angle of depression are found using similar triangles.

In earlier sections of this chapter, we looked at trigonometric identities. Identities are true for all values in the domain of the variable. In this section, we begin our study of trigonometric equations to study real-world scenarios such as the finding the dimensions of the pyramids.

Solving linear trigonometric equations in sine and cosine

Trigonometric equations are, as the name implies, equations that involve trigonometric functions. Similar in many ways to solving polynomial equations or rational equations, only specific values of the variable will be solutions, if there are solutions at all. Often we will solve a trigonometric equation over a specified interval. However, just as often, we will be asked to find all possible solutions, and as trigonometric functions are periodic, solutions are repeated within each period. In other words, trigonometric equations may have an infinite number of solutions. Additionally, like rational equations, the domain of the function must be considered before we assume that any solution is valid. The period    of both the sine function and the cosine function is 2 π . In other words, every 2 π units, the y- values repeat. If we need to find all possible solutions, then we must add 2 π k , where k is an integer, to the initial solution. Recall the rule that gives the format for stating all possible solutions for a function where the period is 2 π :

sin θ = sin ( θ ± 2 k π )

There are similar rules for indicating all possible solutions for the other trigonometric functions. Solving trigonometric equations requires the same techniques as solving algebraic equations. We read the equation from left to right, horizontally, like a sentence. We look for known patterns, factor, find common denominators, and substitute certain expressions with a variable to make solving a more straightforward process. However, with trigonometric equations, we also have the advantage of using the identities we developed in the previous sections.

Solving a linear trigonometric equation involving the cosine function

Find all possible exact solutions for the equation cos θ = 1 2 .

From the unit circle    , we know that

cos θ = 1 2       θ = π 3 , 5 π 3

These are the solutions in the interval [ 0 , 2 π ] . All possible solutions are given by

π 3 ± 2 k π   and   5 π 3 ± 2 k π

where k is an integer.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

can you not take the square root of a negative number
Sharon Reply
No because a negative times a negative is a positive. No matter what you do you can never multiply the same number by itself and end with a negative
Actually you can. you get what's called an Imaginary number denoted by i which is represented on the complex plane. The reply above would be correct if we were still confined to the "real" number line.
Suppose P= {-3,1,3} Q={-3,-2-1} and R= {-2,2,3}.what is the intersection
Elaine Reply
can I get some pretty basic questions
Ama Reply
In what way does set notation relate to function notation
is precalculus needed to take caculus
Amara Reply
It depends on what you already know. Just test yourself with some precalculus questions. If you find them easy, you're good to go.
the solution doesn't seem right for this problem
Mars Reply
what is the domain of f(x)=x-4/x^2-2x-15 then
Conney Reply
x is different from -5&3
All real x except 5 and - 3
how to prroved cos⁴x-sin⁴x= cos²x-sin²x are equal
jeric Reply
Don't think that you can.
By using some imaginary no.
how do you provided cos⁴x-sin⁴x = cos²x-sin²x are equal
jeric Reply
What are the question marks for?
Someone should please solve it for me Add 2over ×+3 +y-4 over 5 simplify (×+a)with square root of two -×root 2 all over a multiply 1over ×-y{(×-y)(×+y)} over ×y
Abena Reply
For the first question, I got (3y-2)/15 Second one, I got Root 2 Third one, I got 1/(y to the fourth power) I dont if it's right cause I can barely understand the question.
Is under distribute property, inverse function, algebra and addition and multiplication function; so is a combined question
find the equation of the line if m=3, and b=-2
Ashley Reply
graph the following linear equation using intercepts method. 2x+y=4
ok, one moment
how do I post your graph for you?
it won't let me send an image?
also for the first one... y=mx+b so.... y=3x-2
y=mx+b you were already given the 'm' and 'b'. so.. y=3x-2
Please were did you get y=mx+b from
y=mx+b is the formula of a straight line. where m = the slope & b = where the line crosses the y-axis. In this case, being that the "m" and "b", are given, all you have to do is plug them into the formula to complete the equation.
thanks Tommy
0=3x-2 2=3x x=3/2 then . y=3/2X-2 I think
co ordinates for x x=0,(-2,0) x=1,(1,1) x=2,(2,4)
"7"has an open circle and "10"has a filled in circle who can I have a set builder notation
Fiston Reply
Where do the rays point?
x=-b+_Гb2-(4ac) ______________ 2a
Ahlicia Reply
I've run into this: x = r*cos(angle1 + angle2) Which expands to: x = r(cos(angle1)*cos(angle2) - sin(angle1)*sin(angle2)) The r value confuses me here, because distributing it makes: (r*cos(angle2))(cos(angle1) - (r*sin(angle2))(sin(angle1)) How does this make sense? Why does the r distribute once
Carlos Reply
so good
this is an identity when 2 adding two angles within a cosine. it's called the cosine sum formula. there is also a different formula when cosine has an angle minus another angle it's called the sum and difference formulas and they are under any list of trig identities
strategies to form the general term
consider r(a+b) = ra + rb. The a and b are the trig identity.
How can you tell what type of parent function a graph is ?
Mary Reply
generally by how the graph looks and understanding what the base parent functions look like and perform on a graph
if you have a graphed line, you can have an idea by how the directions of the line turns, i.e. negative, positive, zero
y=x will obviously be a straight line with a zero slope
y=x^2 will have a parabolic line opening to positive infinity on both sides of the y axis vice versa with y=-x^2 you'll have both ends of the parabolic line pointing downward heading to negative infinity on both sides of the y axis
y=x will be a straight line, but it will have a slope of one. Remember, if y=1 then x=1, so for every unit you rise you move over positively one unit. To get a straight line with a slope of 0, set y=1 or any integer.
yes, correction on my end, I meant slope of 1 instead of slope of 0
what is f(x)=
Karim Reply
I don't understand
Typically a function 'f' will take 'x' as input, and produce 'y' as output. As 'f(x)=y'. According to Google, "The range of a function is the complete set of all possible resulting values of the dependent variable (y, usually), after we have substituted the domain."
Sorry, I don't know where the "Â"s came from. They shouldn't be there. Just ignore them. :-)
It is the  that should not be there. It doesn't seem to show if encloses in quotation marks. "Â" or 'Â' ... Â
Now it shows, go figure?

Get the best Precalculus course in your pocket!

Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?