<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Solve linear trigonometric equations in sine and cosine.
  • Solve equations involving a single trigonometric function.
  • Solve trigonometric equations using a calculator.
  • Solve trigonometric equations that are quadratic in form.
  • Solve trigonometric equations using fundamental identities.
  • Solve trigonometric equations with multiple angles.
  • Solve right triangle problems.
Photo of the Egyptian pyramids near a modern city.
Egyptian pyramids standing near a modern city. (credit: Oisin Mulvihill)

Thales of Miletus (circa 625–547 BC) is known as the founder of geometry. The legend is that he calculated the height of the Great Pyramid of Giza in Egypt using the theory of similar triangles , which he developed by measuring the shadow of his staff. Based on proportions, this theory has applications in a number of areas, including fractal geometry, engineering, and architecture. Often, the angle of elevation and the angle of depression are found using similar triangles.

In earlier sections of this chapter, we looked at trigonometric identities. Identities are true for all values in the domain of the variable. In this section, we begin our study of trigonometric equations to study real-world scenarios such as the finding the dimensions of the pyramids.

Solving linear trigonometric equations in sine and cosine

Trigonometric equations are, as the name implies, equations that involve trigonometric functions. Similar in many ways to solving polynomial equations or rational equations, only specific values of the variable will be solutions, if there are solutions at all. Often we will solve a trigonometric equation over a specified interval. However, just as often, we will be asked to find all possible solutions, and as trigonometric functions are periodic, solutions are repeated within each period. In other words, trigonometric equations may have an infinite number of solutions. Additionally, like rational equations, the domain of the function must be considered before we assume that any solution is valid. The period    of both the sine function and the cosine function is 2 π . In other words, every 2 π units, the y- values repeat. If we need to find all possible solutions, then we must add 2 π k , where k is an integer, to the initial solution. Recall the rule that gives the format for stating all possible solutions for a function where the period is 2 π :

sin θ = sin ( θ ± 2 k π )

There are similar rules for indicating all possible solutions for the other trigonometric functions. Solving trigonometric equations requires the same techniques as solving algebraic equations. We read the equation from left to right, horizontally, like a sentence. We look for known patterns, factor, find common denominators, and substitute certain expressions with a variable to make solving a more straightforward process. However, with trigonometric equations, we also have the advantage of using the identities we developed in the previous sections.

Solving a linear trigonometric equation involving the cosine function

Find all possible exact solutions for the equation cos θ = 1 2 .

From the unit circle    , we know that

cos θ = 1 2       θ = π 3 , 5 π 3

These are the solutions in the interval [ 0 , 2 π ] . All possible solutions are given by

π 3 ± 2 k π   and   5 π 3 ± 2 k π

where k is an integer.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

what is set?
Kelvin Reply
a colony of bacteria is growing exponentially doubling in size every 100 minutes. how much minutes will it take for the colony of bacteria to triple in size
Divya Reply
I got 300 minutes. is it right?
no. should be about 150 minutes.
It should be 158.5 minutes.
ok, thanks
100•3=300 300=50•2^x 6=2^x x=log_2(6) =2.5849625 so, 300=50•2^2.5849625 and, so, the # of bacteria will double every (100•2.5849625) = 258.49625 minutes
what is the importance knowing the graph of circular functions?
Arabella Reply
can get some help basic precalculus
ismail Reply
What do you need help with?
how to convert general to standard form with not perfect trinomial
Camalia Reply
can get some help inverse function
Rectangle coordinate
Asma Reply
how to find for x
Jhon Reply
it depends on the equation
yeah, it does. why do we attempt to gain all of them one side or the other?
whats a domain
mike Reply
The domain of a function is the set of all input on which the function is defined. For example all real numbers are the Domain of any Polynomial function.
Spiro; thanks for putting it out there like that, 😁
foci (–7,–17) and (–7,17), the absolute value of the differenceof the distances of any point from the foci is 24.
Churlene Reply
difference between calculus and pre calculus?
Asma Reply
give me an example of a problem so that I can practice answering
Jenefa Reply
dont forget the cube in each variable ;)
of she solves that, well ... then she has a lot of computational force under her command ....
what is a function?
CJ Reply
I want to learn about the law of exponent
Quera Reply
explain this
Hinderson Reply
what is functions?
Angel Reply
A mathematical relation such that every input has only one out.
yes..it is a relationo of orders pairs of sets one or more input that leads to a exactly one output.
Is a rule that assigns to each element X in a set A exactly one element, called F(x), in a set B.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now

Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?