<< Chapter < Page Chapter >> Page >

The point ( 2 2 , 2 2 ) is on the unit circle, as shown in [link] . Find sin t , cos t , tan t , sec t , csc t , and cot t .

Graph of circle with angle of t inscribed. Point of (square root of 2 over 2, negative square root of 2 over 2) is at intersection of terminal side of angle and edge of circle.

sin t = 2 2 , cos t = 2 2 , tan t = 1 , sec t = 2 , csc t = 2 , cot t = 1

Got questions? Get instant answers now!

Finding the trigonometric functions of an angle

Find sin t , cos t , tan t , sec t , csc t , and cot t when t = π 6 .

We have previously used the properties of equilateral triangles to demonstrate that sin π 6 = 1 2 and cos π 6 = 3 2 . We can use these values and the definitions of tangent, secant, cosecant, and cotangent as functions of sine and cosine to find the remaining function values.

tan   π 6 = sin   π 6 cos   π 6 = 1 2 3 2 = 1 3 = 3 3
sec π 6 = 1 cos π 6 = 1 3 2 = 2 3 = 2 3 3
csc π 6 = 1 sin π 6 = 1 1 2 = 2
cot π 6 = cos π 6 sin π 6 = 3 2 1 2 = 3
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Find sin t , cos t , tan t , sec t , csc t , and cot t when t = π 3 .

sin π 3 = 3 2 cos π 3 = 1 2 tan π 3 = 3 sec π 3 = 2 csc π 3 = 2 3 3 cot π 3 = 3 3

Got questions? Get instant answers now!

Because we know the sine and cosine values for the common first-quadrant angles, we can find the other function values for those angles as well by setting x equal to the cosine and y equal to the sine and then using the definitions of tangent, secant, cosecant, and cotangent. The results are shown in [link] .

Angle 0 π 6 ,  or 30° π 4 ,  or 45° π 3 ,  or 60° π 2 ,  or 90°
Cosine 1 3 2 2 2 1 2 0
Sine 0 1 2 2 2 3 2 1
Tangent 0 3 3 1 3 Undefined
Secant 1 2 3 3 2 2 Undefined
Cosecant Undefined 2 2 2 3 3 1
Cotangent Undefined 3 1 3 3 0

Using reference angles to evaluate tangent, secant, cosecant, and cotangent

We can evaluate trigonometric functions of angles outside the first quadrant using reference angles as we have already done with the sine and cosine functions. The procedure is the same: Find the reference angle    formed by the terminal side of the given angle with the horizontal axis. The trigonometric function values for the original angle will be the same as those for the reference angle, except for the positive or negative sign, which is determined by x - and y -values in the original quadrant. [link] shows which functions are positive in which quadrant.

To help us remember which of the six trigonometric functions are positive in each quadrant, we can use the mnemonic phrase “A Smart Trig Class.” Each of the four words in the phrase corresponds to one of the four quadrants, starting with quadrant I and rotating counterclockwise. In quadrant I, which is “ A ,” a ll of the six trigonometric functions are positive. In quadrant II, “ S mart,” only s ine and its reciprocal function, cosecant, are positive. In quadrant III, “ T rig,” only t angent and its reciprocal function, cotangent, are positive. Finally, in quadrant IV, “ C lass,” only c osine and its reciprocal function, secant, are positive.

Graph of circle with each quadrant labeled. Under quadrant 1, labels fro sin t, cos t, tan t, sec t, csc t, and cot t. Under quadrant 2, labels for sin t and csc t. Under quadrant 3, labels for tan t and cot t. Under quadrant 4, labels for cos t, sec t.

Given an angle not in the first quadrant, use reference angles to find all six trigonometric functions.

  1. Measure the angle formed by the terminal side of the given angle and the horizontal axis. This is the reference angle.
  2. Evaluate the function at the reference angle.
  3. Observe the quadrant where the terminal side of the original angle is located. Based on the quadrant, determine whether the output is positive or negative.

Using reference angles to find trigonometric functions

Use reference angles to find all six trigonometric functions of 5 π 6 .

The angle between this angle’s terminal side and the x -axis is π 6 , so that is the reference angle. Since 5 π 6 is in the third quadrant, where both x and y are negative, cosine, sine, secant, and cosecant will be negative, while tangent and cotangent will be positive.

cos ( 5 π 6 ) = 3 2 , sin ( 5 π 6 ) = 1 2 , tan ( 5 π 6 ) = 3 3 sec ( 5 π 6 ) = 2 3 3 , csc ( 5 π 6 ) = 2 , cot ( 5 π 6 ) = 3
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

find the equation of the line if m=3, and b=-2
Ashley Reply
graph the following linear equation using intercepts method. 2x+y=4
ok, one moment
how do I post your graph for you?
it won't let me send an image?
also for the first one... y=mx+b so.... y=3x-2
y=mx+b you were already given the 'm' and 'b'. so.. y=3x-2
"7"has an open circle and "10"has a filled in circle who can I have a set builder notation
Fiston Reply
x=-b+_Гb2-(4ac) ______________ 2a
Ahlicia Reply
I've run into this: x = r*cos(angle1 + angle2) Which expands to: x = r(cos(angle1)*cos(angle2) - sin(angle1)*sin(angle2)) The r value confuses me here, because distributing it makes: (r*cos(angle2))(cos(angle1) - (r*sin(angle2))(sin(angle1)) How does this make sense? Why does the r distribute once
Carlos Reply
so good
this is an identity when 2 adding two angles within a cosine. it's called the cosine sum formula. there is also a different formula when cosine has an angle minus another angle it's called the sum and difference formulas and they are under any list of trig identities
strategies to form the general term
How can you tell what type of parent function a graph is ?
Mary Reply
generally by how the graph looks and understanding what the base parent functions look like and perform on a graph
if you have a graphed line, you can have an idea by how the directions of the line turns, i.e. negative, positive, zero
y=x will obviously be a straight line with a zero slope
y=x^2 will have a parabolic line opening to positive infinity on both sides of the y axis vice versa with y=-x^2 you'll have both ends of the parabolic line pointing downward heading to negative infinity on both sides of the y axis
y=x will be a straight line, but it will have a slope of one. Remember, if y=1 then x=1, so for every unit you rise you move over positively one unit. To get a straight line with a slope of 0, set y=1 or any integer.
yes, correction on my end, I meant slope of 1 instead of slope of 0
what is f(x)=
Karim Reply
I don't understand
Typically a function 'f' will take 'x' as input, and produce 'y' as output. As 'f(x)=y'. According to Google, "The range of a function is the complete set of all possible resulting values of the dependent variable (y, usually), after we have substituted the domain."
Sorry, I don't know where the "Â"s came from. They shouldn't be there. Just ignore them. :-)
It is the  that should not be there. It doesn't seem to show if encloses in quotation marks. "Â" or 'Â' ... Â
Now it shows, go figure?
what is this?
unknown Reply
i do not understand anything
lol...it gets better
I've been struggling so much through all of this. my final is in four weeks 😭
this book is an excellent resource! have you guys ever looked at the online tutoring? there's one that is called "That Tutor Guy" and he goes over a lot of the concepts
thank you I have heard of him. I should check him out.
is there any question in particular?
I have always struggled with math. I get lost really easy, if you have any advice for that, it would help tremendously.
Sure, are you in high school or college?
Hi, apologies for the delayed response. I'm in college.
how to solve polynomial using a calculator
Ef Reply
So a horizontal compression by factor of 1/2 is the same as a horizontal stretch by a factor of 2, right?
The center is at (3,4) a focus is at (3,-1), and the lenght of the major axis is 26
Rima Reply
The center is at (3,4) a focus is at (3,-1) and the lenght of the major axis is 26 what will be the answer?
I done know
What kind of answer is that😑?
I had just woken up when i got this message
Can you please help me. Tomorrow is the deadline of my assignment then I don't know how to solve that
i have a question.
how do you find the real and complex roots of a polynomial?
@abdul with delta maybe which is b(square)-4ac=result then the 1st root -b-radical delta over 2a and the 2nd root -b+radical delta over 2a. I am not sure if this was your question but check it up
This is the actual question: Find all roots(real and complex) of the polynomial f(x)=6x^3 + x^2 - 4x + 1
@Nare please let me know if you can solve it.
I have a question
hello guys I'm new here? will you happy with me
The average annual population increase of a pack of wolves is 25.
Brittany Reply
how do you find the period of a sine graph
Imani Reply
Period =2π if there is a coefficient (b), just divide the coefficient by 2π to get the new period
if not then how would I find it from a graph
by looking at the graph, find the distance between two consecutive maximum points (the highest points of the wave). so if the top of one wave is at point A (1,2) and the next top of the wave is at point B (6,2), then the period is 5, the difference of the x-coordinates.
you could also do it with two consecutive minimum points or x-intercepts
I will try that thank u
Case of Equilateral Hyperbola
Jhon Reply
f(x)=4x+2, find f(3)
f(3)=4(3)+2 f(3)=14
pre calc teacher: "Plug in Plug in...smell's good" f(x)=14
Explain why log a x is not defined for a < 0
Baptiste Reply
the sum of any two linear polynomial is what
Esther Reply
Practice Key Terms 6

Get the best Precalculus course in your pocket!

Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?