<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Use like bases to solve exponential equations.
  • Use logarithms to solve exponential equations.
  • Use the definition of a logarithm to solve logarithmic equations.
  • Use the one-to-one property of logarithms to solve logarithmic equations.
  • Solve applied problems involving exponential and logarithmic equations.
Seven rabbits in front of a brick building.
Wild rabbits in Australia. The rabbit population grew so quickly in Australia that the event became known as the “rabbit plague.” (credit: Richard Taylor, Flickr)

In 1859, an Australian landowner named Thomas Austin released 24 rabbits into the wild for hunting. Because Australia had few predators and ample food, the rabbit population exploded. In fewer than ten years, the rabbit population numbered in the millions.

Uncontrolled population growth, as in the wild rabbits in Australia, can be modeled with exponential functions. Equations resulting from those exponential functions can be solved to analyze and make predictions about exponential growth. In this section, we will learn techniques for solving exponential functions.

Using like bases to solve exponential equations

The first technique involves two functions with like bases. Recall that the one-to-one property of exponential functions tells us that, for any real numbers b , S , and T , where b > 0 ,   b 1 , b S = b T if and only if S = T .

In other words, when an exponential equation has the same base on each side, the exponents must be equal. This also applies when the exponents are algebraic expressions. Therefore, we can solve many exponential equations by using the rules of exponents to rewrite each side as a power with the same base. Then, we use the fact that exponential functions are one-to-one to set the exponents equal to one another, and solve for the unknown.

For example, consider the equation 3 4 x 7 = 3 2 x 3 . To solve for x , we use the division property of exponents to rewrite the right side so that both sides have the common base, 3. Then we apply the one-to-one property of exponents by setting the exponents equal to one another and solving for x :

3 4 x 7 = 3 2 x 3 3 4 x 7 = 3 2 x 3 1 Rewrite 3 as 3 1 . 3 4 x 7 = 3 2 x 1 Use the division property of exponents . 4 x 7 = 2 x 1   Apply the one-to-one property of exponents . 2 x = 6 Subtract 2 x  and add 7 to both sides . x = 3 Divide by 3 .

Using the one-to-one property of exponential functions to solve exponential equations

For any algebraic expressions S  and  T , and any positive real number b 1 ,

b S = b T if and only if S = T

Given an exponential equation with the form b S = b T , where S and T are algebraic expressions with an unknown, solve for the unknown.

  1. Use the rules of exponents to simplify, if necessary, so that the resulting equation has the form b S = b T .
  2. Use the one-to-one property to set the exponents equal.
  3. Solve the resulting equation, S = T , for the unknown.

Solving an exponential equation with a common base

Solve 2 x 1 = 2 2 x 4 .

  2 x 1 = 2 2 x 4 The common base is   2.      x 1 = 2 x 4 By the one-to-one property the exponents must be equal .           x = 3 Solve for  x .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Solve 5 2 x = 5 3 x + 2 .

x = 2

Got questions? Get instant answers now!

Questions & Answers

what is set?
Kelvin Reply
a colony of bacteria is growing exponentially doubling in size every 100 minutes. how much minutes will it take for the colony of bacteria to triple in size
Divya Reply
I got 300 minutes. is it right?
no. should be about 150 minutes.
It should be 158.5 minutes.
ok, thanks
100•3=300 300=50•2^x 6=2^x x=log_2(6) =2.5849625 so, 300=50•2^2.5849625 and, so, the # of bacteria will double every (100•2.5849625) = 258.49625 minutes
what is the importance knowing the graph of circular functions?
Arabella Reply
can get some help basic precalculus
ismail Reply
What do you need help with?
how to convert general to standard form with not perfect trinomial
Camalia Reply
can get some help inverse function
Rectangle coordinate
Asma Reply
how to find for x
Jhon Reply
it depends on the equation
yeah, it does. why do we attempt to gain all of them one side or the other?
whats a domain
mike Reply
The domain of a function is the set of all input on which the function is defined. For example all real numbers are the Domain of any Polynomial function.
Spiro; thanks for putting it out there like that, 😁
foci (–7,–17) and (–7,17), the absolute value of the differenceof the distances of any point from the foci is 24.
Churlene Reply
difference between calculus and pre calculus?
Asma Reply
give me an example of a problem so that I can practice answering
Jenefa Reply
dont forget the cube in each variable ;)
of she solves that, well ... then she has a lot of computational force under her command ....
what is a function?
CJ Reply
I want to learn about the law of exponent
Quera Reply
explain this
Hinderson Reply
what is functions?
Angel Reply
A mathematical relation such that every input has only one out.
yes..it is a relationo of orders pairs of sets one or more input that leads to a exactly one output.
Is a rule that assigns to each element X in a set A exactly one element, called F(x), in a set B.
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now

Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?