<< Chapter < Page Chapter >> Page >

Given a rational function, sketch a graph.

  1. Evaluate the function at 0 to find the y -intercept.
  2. Factor the numerator and denominator.
  3. For factors in the numerator not common to the denominator, determine where each factor of the numerator is zero to find the x -intercepts.
  4. Find the multiplicities of the x -intercepts to determine the behavior of the graph at those points.
  5. For factors in the denominator, note the multiplicities of the zeros to determine the local behavior. For those factors not common to the numerator, find the vertical asymptotes by setting those factors equal to zero and then solve.
  6. For factors in the denominator common to factors in the numerator, find the removable discontinuities by setting those factors equal to 0 and then solve.
  7. Compare the degrees of the numerator and the denominator to determine the horizontal or slant asymptotes.
  8. Sketch the graph.

Graphing a rational function

Sketch a graph of f ( x ) = ( x + 2 ) ( x 3 ) ( x + 1 ) 2 ( x 2 ) .

We can start by noting that the function is already factored, saving us a step.

Next, we will find the intercepts. Evaluating the function at zero gives the y -intercept:

f ( 0 ) = ( 0 + 2 ) ( 0 3 ) ( 0 + 1 ) 2 ( 0 2 )         = 3

To find the x -intercepts, we determine when the numerator of the function is zero. Setting each factor equal to zero, we find x -intercepts at x = –2 and x = 3. At each, the behavior will be linear (multiplicity 1), with the graph passing through the intercept.

We have a y -intercept at ( 0 , 3 ) and x -intercepts at ( –2 , 0 ) and ( 3 , 0 ) .

To find the vertical asymptotes, we determine when the denominator is equal to zero. This occurs when x + 1 = 0 and when x 2 = 0 , giving us vertical asymptotes at x = –1 and x = 2.

There are no common factors in the numerator and denominator. This means there are no removable discontinuities.

Finally, the degree of denominator is larger than the degree of the numerator, telling us this graph has a horizontal asymptote at y = 0.

To sketch the graph, we might start by plotting the three intercepts. Since the graph has no x -intercepts between the vertical asymptotes, and the y -intercept is positive, we know the function must remain positive between the asymptotes, letting us fill in the middle portion of the graph as shown in [link] .

Graph of only the middle portion of f(x)=(x+2)(x-3)/(x+1)^2(x-2) with its intercepts at (-2, 0), (0, 3), and (3, 0).

The factor associated with the vertical asymptote at x = −1 was squared, so we know the behavior will be the same on both sides of the asymptote. The graph heads toward positive infinity as the inputs approach the asymptote on the right, so the graph will head toward positive infinity on the left as well.

For the vertical asymptote at x = 2 , the factor was not squared, so the graph will have opposite behavior on either side of the asymptote. See [link] . After passing through the x -intercepts, the graph will then level off toward an output of zero, as indicated by the horizontal asymptote.

Graph of f(x)=(x+2)(x-3)/(x+1)^2(x-2) with its vertical asymptotes at x=-1 and x=2, its horizontal asymptote at y=0, and its intercepts at (-2, 0), (0, 3), and (3, 0).
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Given the function f ( x ) = ( x + 2 ) 2 ( x 2 ) 2 ( x 1 ) 2 ( x 3 ) , use the characteristics of polynomials and rational functions to describe its behavior and sketch the function.

Horizontal asymptote at y = 1 2 . Vertical asymptotes at x = 1   and   x = 3. y -intercept at ( 0 , 4 3 . )

x -intercepts at ( 2 , 0 )    and  ( 2 , 0 ) . ( 2 , 0 ) is a zero with multiplicity 2, and the graph bounces off the x -axis at this point. ( 2 , 0 ) is a single zero and the graph crosses the axis at this point.

Graph of f(x)=(x+2)^2(x-2)/2(x-1)^2(x-3) with its vertical and horizontal asymptotes.
Got questions? Get instant answers now!

Questions & Answers

what is a function?
CJ Reply
I want to learn about the law of exponent
Quera Reply
explain this
Hinderson Reply
what is functions?
Angel Reply
A mathematical relation such that every input has only one out.
yes..it is a relationo of orders pairs of sets one or more input that leads to a exactly one output.
Is a rule that assigns to each element X in a set A exactly one element, called F(x), in a set B.
If the plane intersects the cone (either above or below) horizontally, what figure will be created?
Feemark Reply
can you not take the square root of a negative number
Sharon Reply
No because a negative times a negative is a positive. No matter what you do you can never multiply the same number by itself and end with a negative
Actually you can. you get what's called an Imaginary number denoted by i which is represented on the complex plane. The reply above would be correct if we were still confined to the "real" number line.
Suppose P= {-3,1,3} Q={-3,-2-1} and R= {-2,2,3}.what is the intersection
Elaine Reply
can I get some pretty basic questions
Ama Reply
In what way does set notation relate to function notation
is precalculus needed to take caculus
Amara Reply
It depends on what you already know. Just test yourself with some precalculus questions. If you find them easy, you're good to go.
the solution doesn't seem right for this problem
Mars Reply
what is the domain of f(x)=x-4/x^2-2x-15 then
Conney Reply
x is different from -5&3
All real x except 5 and - 3
how to prroved cos⁴x-sin⁴x= cos²x-sin²x are equal
jeric Reply
Don't think that you can.
By using some imaginary no.
how do you provided cos⁴x-sin⁴x = cos²x-sin²x are equal
jeric Reply
What are the question marks for?
Someone should please solve it for me Add 2over ×+3 +y-4 over 5 simplify (×+a)with square root of two -×root 2 all over a multiply 1over ×-y{(×-y)(×+y)} over ×y
Abena Reply
For the first question, I got (3y-2)/15 Second one, I got Root 2 Third one, I got 1/(y to the fourth power) I dont if it's right cause I can barely understand the question.
Is under distribute property, inverse function, algebra and addition and multiplication function; so is a combined question
find the equation of the line if m=3, and b=-2
Ashley Reply
graph the following linear equation using intercepts method. 2x+y=4
ok, one moment
how do I post your graph for you?
it won't let me send an image?
also for the first one... y=mx+b so.... y=3x-2
y=mx+b you were already given the 'm' and 'b'. so.. y=3x-2
Please were did you get y=mx+b from
y=mx+b is the formula of a straight line. where m = the slope & b = where the line crosses the y-axis. In this case, being that the "m" and "b", are given, all you have to do is plug them into the formula to complete the equation.
thanks Tommy
0=3x-2 2=3x x=3/2 then . y=3/2X-2 I think
co ordinates for x x=0,(-2,0) x=1,(1,1) x=2,(2,4)
Practice Key Terms 5

Get the best Precalculus course in your pocket!

Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?