<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Find the derivative of a function.
  • Find instantaneous rates of change.
  • Find an equation of the tangent line to the graph of a function at a point.
  • Find the instantaneous velocity of a particle.

The average teen in the United States opens a refrigerator door an estimated 25 times per day. Supposedly, this average is up from 10 years ago when the average teenager opened a refrigerator door 20 times per day http://www.csun.edu/science/health/docs/tv&health.html Source provided. .

It is estimated that a television is on in a home 6.75 hours per day, whereas parents spend an estimated 5.5 minutes per day having a meaningful conversation with their children. These averages, too, are not the same as they were 10 years ago, when the television was on an estimated 6 hours per day in the typical household, and parents spent 12 minutes per day in meaningful conversation with their kids.

What do these scenarios have in common? The functions representing them have changed over time. In this section, we will consider methods of computing such changes over time.

Finding the average rate of change of a function

The functions describing the examples above involve a change over time. Change divided by time is one example of a rate. The rates of change in the previous examples are each different. In other words, some changed faster than others. If we were to graph the functions, we could compare the rates by determining the slopes of the graphs.

A tangent line    to a curve is a line that intersects the curve at only a single point but does not cross it there. (The tangent line may intersect the curve at another point away from the point of interest.) If we zoom in on a curve at that point, the curve appears linear, and the slope of the curve at that point is close to the slope of the tangent line at that point.

[link] represents the function f ( x ) = x 3 4 x . We can see the slope at various points along the curve.

  • slope at x = −2 is 8
  • slope at x = −1 is –1
  • slope at x = 2 is 8

Graph of f(x) = x^3 - 4x with tangent lines at x = -2 with a slope of 8, at x = -3 with a slope of -1, and at x=2 with a slope of 8.
Graph showing tangents to curve at –2, –1, and 2.

Let’s imagine a point on the curve of function f at x = a as shown in [link] . The coordinates of the point are ( a , f ( a ) ) . Connect this point with a second point on the curve a little to the right of x = a , with an x -value increased by some small real number h . The coordinates of this second point are ( a + h , f ( a + h ) ) for some positive-value h .

Graph of an increasing function that demonstrates the rate of change of the function by drawing a line between the two points, (a, f(a)) and (a, f(a+h)).
Connecting point a with a point just beyond allows us to measure a slope close to that of a tangent line at x = a .

We can calculate the slope of the line connecting the two points ( a , f ( a ) ) and ( a + h , f ( a + h ) ) , called a secant line    , by applying the slope formula,

slope =  change in  y change in  x

slope =  change in  y change in  x

We use the notation m sec to represent the slope of the secant line connecting two points.

m sec = f ( a + h ) f ( a ) ( a + h ) ( a )         = f ( a + h ) f ( a ) a + h a

The slope m sec equals the average rate of change between two points ( a , f ( a ) ) and ( a + h , f ( a + h ) ) .

m sec = f ( a + h ) f ( a ) h

The average rate of change between two points on a curve

The average rate of change    (AROC) between two points ( a , f ( a ) ) and ( a + h , f ( a + h ) ) on the curve of f is the slope of the line connecting the two points and is given by

AROC = f ( a + h ) f ( a ) h

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask