<< Chapter < Page Chapter >> Page >
Connection selection.
Connection Description
SMU1 Medium power source with low noise preamplifier
SMU2 Medium power source without preamplifier
SMU3 High Power
GNRD For large currents
Keithley Interactive Test Environment (KITE) interface window.

Measurement analysis

Typical v-i characteristics of jfets

Voltage sweeps are a great way to learn about the device. [link] shows a typical plot of drain-source voltage sweeps at various gate-source voltages while measuring the drain current, I D for a n-channel JFET. The V-I characteristics have four distinct regions. Analysis of these regions can provides critical information about the device characteristics such as the pinch off voltage, V P , transcunductance gain, g m , drain-source channel resistance, R DS , and power dissipation, P D .

A plot of the drain-source voltage sweeps at various gate voltages with the corresponding drain current measurements of an "ideal" n-channel JFET. The four characteristic regions, Ohmic, saturation, breakdown, and pinch-off, are labeled. Figure adapted from Electronic Tutorials (http://www.electronic-tutorials.ws).

Ohmic region (linear region)

This region is bounded by V DS <V P . Here the JFET begins to flow a drain current with a linear response to the voltage, behaving like a variable resistor. In this region the drain-source channel resistance, R DS is modeled by [link] , where ΔV DS is the change in drain-source voltage, ΔI D is the change in drain current, and g m is the transcunductance gain. Solving for g m results in [link] .

R DS = ΔV DS ΔI D = 1 g m size 12{R rSub { size 8{ ital "DS"} } = { {ΔV rSub { size 8{ ital "DS"} } } over {ΔI rSub { size 8{D} } } } = { {1} over {g rSub { size 8{m} } } } } {}
g m = ΔI D ΔV DS = 1 R DS size 12{g rSub { size 8{m} } = { {ΔI rSub { size 8{D} } } over {ΔV rSub { size 8{ ital "DS"} } } } = { {1} over {R rSub { size 8{ ital "DS"} } } } } {}

Saturation region

This is the region where the JFET is completely “ON”. The maximum amount of current is flowing for the given gate-source voltage. In this region the drain current can be modeled by the [link] , where I D is the drain current, I DSS is the maximum current, V GS is the gate-source voltage, and V P is the pinch off voltage. Solving for the pinch off voltage results in [link] .

I D = I DSS 1 V GS V P 2 size 12{I rSub { size 8{D} } =I rSub { size 8{ ital "DSS"} } left (1 - { {V rSub { size 8{ ital "GS"} } } over {V rSub { size 8{P} } } } right ) rSup { size 8{2} } } {}
V P = 1 V GS I D I DSS size 12{V rSub { size 8{P} } =1 - { {V rSub { size 8{ ital "GS"} } } over { sqrt { { {I rSub { size 8{D} } } over {I rSub { size 8{ ital "DSS"} } } } } } } } {}

Breakdown region

This region is characterized by the sudden increase in current. The drain-source voltage supplied exceeds the resistive limit of the semiconducting channel, resulting in the transistor to break down and flow an uncontrolled current.

Pinch-off region (cutoff region)

In this region the gate-source voltage is sufficient to restrict the flow through the channel, in effect cutting off the drain current. The power dissipation, P D , can be solved utilizing Ohms law (I = V/R) for any region using [link] .

LEED IV curve

The p-channel JFET V-I characteristics behave similarly except that the voltages are reversed. Specifically, the pinch off point is reached when the gate-source voltage is increased in a positive direction, and the saturation region is met when the drain-source voltage is increased in the negative direction.

Typical v-i characteristics of mosfets

[link] shows a typical plot of drain-source voltage sweeps at various gate-source voltages while measuring the drain current, I D for an ideal n-channel enhancement MOSFET. Like JFETs, the V-I characteristics of MOSFETS have distinct regions that provide valuable information about device transport properties.

A plot of the drain-source voltage sweeps at various gate voltages with the corresponding drain current measurements of an "ideal" n-channel enahnced MOSFET. Here +ve means that the gate-source voltage is increased in the positive direction. Figure adapted from Electronic Tutorials (http://www.electronic-tutorials.ws).

Ohmic region (linear region)

The n-channel enhanced MOSFET behaves linearly, acting like a variable resistor, when the gate-source voltage is greater than the threshold voltage and the drain-source voltage is greater than the gate-source voltage. In this region the drain current can be modeled by [link] , where I D is the drain current, V GS is the gate-source voltage, V T is the threshold voltage, V DS is the drain-source voltage, and k is the geometric factor described by [link] , where µ n is the charge-carrier effective mobility, C OX is the gate oxide capacitance, W is the channel width, and L is the channel length.

FET2
k = μ n C OX W L size 12{k=μ rSub { size 8{n} } C rSub { size 8{ ital "OX"} } { {W} over {L} } } {}

Saturation region

In this region the MOSFET is considered fully “ON”. The drain current for the saturation region is modeled by [link] . The drain current is mainly influenced by the gate-source voltage, while the drain-source voltage has no effect.

I D = k V GS V T 2 size 12{I rSub { size 8{D} } =k left (V rSub { size 8{ ital "GS"} } - V rSub { size 8{T} } right ) rSup { size 8{2} } } {}

Solving for the threshold voltage V T results in [link] .

V T = V GS I D k size 12{V rSub { size 8{T} } =V rSub { size 8{ ital "GS"} } - sqrt { { {I rSub { size 8{D} } } over {k} } } } {}

Pinch-off region (cutoff region)

When the gate-source voltage, V GS , is below the threshold voltage V T the charge carriers in the channel are not available “cutting off” the charge flow. Power dissipation for MOSFETs can also be solved using equation 6 in any region as in the JFET case.

Fet v-i summary

The typical I-V characteristics for the whole family of FETs seen in [link] are plotted in [link] .

Plot of V-I characteristics for the various FET types. Adapted from P. Horowitz and W. Hill, in Art of Electronics, Cambridge University Press, New York, 2 nd Edn., 1994.

From [link] we can see how the doping schemes that lead to enhancement and depletion are displaced along the V GS axis. In addition, from the plot the ON or OFF state can be determined for a given gate-source voltage, where (+) is positive, (0) is zero, and (-) is negative, as seen in [link] .

The ON/OFF state for the various FETs at a given gate-source voltages where (-) is a negative voltage and (+) is a positive voltage.
FET Type V GS = (-) V GS = 0 V GS = (+)
n-channel JFET OFF ON ON
p-channel JFET ON ON OFF
n-channel depletion MOSFET OFF ON ON
p-channel depletion MOSFET ON ON OFF
n-channel enhancement MOSFET OFF OFF ON
p-channel enhancement MOSFET ON ON OFF

Bibliography

  • US Patent, US2524035A, 1950.
  • P. Horowitz and W. Hill, in Art of Electronics, Cambridge University Press, New York, 2 nd Edn., 1994.
  • Electronics Tutorials, http://www.electronics-tutorials.ws/ (accessed February 2015).
  • C. Alexander and M. Sadiku, in Fundamentals of Electric Circuits , McGraw-Hill Education, New York, 4 th Edn., 2009.
  • Interactive Explanations for Semiconductor Devices, http://www-g.eng.cam.ac.uk/mmg/teaching/linearcircuits/index.html (accessed February 2015).
  • D. Neamen, in An Introduction to Semiconductor Devices , McGraw-Hill Education, New York, 1 st Edn., 2005.

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask