<< Chapter < Page Chapter >> Page >
Schematic representation general setup where the surface barrier detector is placed at angle of 165° to the extrapolated incident beam.

Depth profile analysis

As stated earlier, it is a good approximation in thin film analysis that the total energy loss ΔE is proportional to depth t. With this approximation, we can derive the relation between energy width ΔE of the signal from a film of thickness Δt as follows,

ΔE = Δt( k dE/dx in ­+ 1/cosØ dE/dx out )

where Ø = lab scattering angle.

It is worth noting that k is the kinematic factor defined in equation above and the subscripts “in” and “out” indicate the energies at which the rate of loss of energy or dE/dx is evaluated. As an example, we consider the backscattering spectrum, at scattering angle 170°, for 2 MeV He ++ incidents on silicon layer deposited onto 2 mm thick niobium substrate [link] .

alternate text
The backscattering spectrum for 2.0 MeV He ions incident on a silicon thin film deposited onto a niobium substrate. Adapted from P. D. Stupik, M. M. Donovan, A. R. Barron, T. R. Jervis and M. Nastasi, Thin Solid Films , 1992, 207 , 138.

The energy loss rate of incoming He ++ or dE/dx along inward path in elemental Si is ≈24.6 eV/Å at 2 MeV and is ≈26 eV/Å for the outgoing particle at 1.12 MeV (Since K of Si is 0.56 when the scattering angle is 170°, energy of the outgoing particle would be equal to 2 x 0.56 or 1.12 MeV) . Again the value of ΔE Si is ≈133.3 keV. Putting the values into above equation we get

Δt ≈ 133.3 keV/(0.56 * 24.6 eV/Å + 1/cos 170° * 26 eV/Å)

= 133.3 keV/(13.77 eV/Å + 29/.985 eV/Å)

= 133.3 keV/ 40.17 eV/Å

= 3318 Å.

Hence a Si layer of ca. 3300 Å thickness has been deposited on the niobium substrate. However we need to remember that the value of dE/dx is approximated in this calculation.

Quantitative analysis

In addition to depth profile analysis, we can study the composition of an element quantitatively by backscattering spectroscopy. The basic equation for quantitative analysis is

Y = σ. Ω. Q. NΔt

Where Y is the yield of scattered ions from a thin layer of thickness Δt, Q is the number of incident ions and Ω is the detector solid angle, and NΔt is the number of specimen atoms (atom/cm 2 ). [link] shows the RBS spectrum for a sample of silicon deposited on a niobium substrate and subjected to laser mixing. The Nb has reacted with the silicon to form a NbSi 2 interphase layer. The Nb signal has broadened after the reaction as show in [link] .

alternate text
Backscattering spectra of Si diffused into Nb and Si as deposited on Nb substrate. Adapted from P. D. Stupik, M. M. Donovan, A. R. Barron, T. R. Jervis and M. Nastasi, Thin Solid Films , 1992, 207 , 138.

We can use ratio of the heights H Si /H Nb of the backscattering spectrum after formation of NbSi 2 to determine the composition of the silicide layer. The stoichiometric ratio of Nb and Si can be approximated as,

N Si /N Nb ≈ [H Si * σ Si ]/[H Nb * σ Nb ]

Hence the concentration of Si and Nb can be determined if we can know the appropriate cross sections σ Si and σ Nb . However the yield in the backscattering spectra is better represented as the product of signal height and the energy width ΔE. Thus stoichiometric ratio can be better approximated as

N Si /N Nb ≈ [H Si * ΔE Si * σ Si ]/[H Nb * ΔE Nb * σ Nb ]

Limitations

It is of interest to understand the limitations of the backscattering technique in terms of the comparison with other thin film analysis technique such as AES, XPS and SIMS ( [link] ). AES has better mass resolution, lateral resolution and depth resolution than RBS. But AES suffers from sputtering artifacts. Compared to RBS, SIMS has better sensitivity. RBS does not provide any chemical bonding information which we can get from XPS. Again, sputtering artifact problems are also associated in XPS. The strength of RBS lies in quantitative analysis. However, conventional RBS systems cannot analyze ultrathin films since the depth resolution is only about 10 nm using surface barrier detector.

Summary

Rutherford Backscattering analysis is a straightforward technique to determine the thickness and composition of thin films (<4000 Å). Areas that have been lately explored are the use of backscattering technique in composition determination of new superconductor oxides; analysis of lattice mismatched epitaxial layers, and as a probe of thin film morphology and surface clustering.

Bibliography

  • L. C. Feldman and J. W. Mayer, Fundamentals of Surface and Thin Film Analysis , North Holland-Elsevier, New York (1986).
  • Ion Spectroscopies for Surface Analysis , Ed. A. W. Czanderna and D. M. Hercules, Plenum Press (New York), 1991.
  • P. D. Stupik, M. M. Donovan, A. R Barron, T. R. Jervis, and M. Nastasi, Thin Solid Films , 1992, 207 , 138

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask