<< Chapter < Page Chapter >> Page >


Ion Chromatography is a method of separating ions based on their distinct retention rates in a given solid phase packing material. Given different retention rates for two anions or two cations, the elution time of each ion will differ, allowing for detection and separation of one ion before the other. Detection methods are separated between electrochemical methods and spectroscopic methods. This guide will cover the principles of retention rates for anions and cations, as well as describing the various types of solid-state packing materials and eluents that can be used.

Principles of ion chromatography

Retention models in anion chromatography

The retention model for anionic chromatography can be split into two distinct models, one for describing eluents with a single anion, and the other for describing eluents with complexing agents present. Given an eluent anion or an analyte anion, two phases are observed, the stationary phase (denoted by S) and the mobile phase (denoted by M). As such, there is equilibrium between the two phases for both the eluent anions and the analyte anions that can be described by [link] .

This yields an equilibrium constant as given in [link] .

Given the activity of the two ions cannot be found in the stationary or mobile phases, the activity coefficients are set to 1. Two new quantities are then introduced. The first is the distribution coefficient, D A , which is the ratio of analyte concentrations in the stationary phase to the mobile phase, [link] . The second is the retention factor, k 1 A , which is the distribution coefficient times the ratio of volume between the two phases, [link] .

Substituting the two quantities from [link] and [link] into [link] , the equilibrium constant can be written as [link] .

Given there is usually a large difference in concentrations between the eluent and the analyte (with magnitudes of 10 greater eluent), equation 4 can be re-written under the assumption that all the solid phase packing material’s functional groups are taken up by E y- . As such, the stationary E y- can be substituted with the exchange capacity divided by the charge of E y- . This yields [link] .

Solving for the retention factor, [link] is developed.

[link] shows the relationship between retention factor and parameters like eluent concentration and the exchange capacity, which allows parameters of the ion chromatography to be manipulated and the retention factors to be determined. [link] only works for a single analyte present, but a relationship for the selectivity between two analytes [A] and [B]can easily be determined.

First the equilibrium between the two analytes is determined as [link] .

The equilibrium constant can be written as [link] (ignoring activity):

The selectivity can then be determined to be [link] .

[link] can then be simplified into a logarithmic form as the following two equations:

When the two charges are the same, it can be seen that the selectivity is only a factor of the selectivity coefficients and the charges. When the two charges are different, it can be seen that the two retention factors are dependent upon each other.

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
advantages of NAA
Sai Reply
how I can reaction of mercury?
Sham Reply

Get the best Physical methods in ch... course in your pocket!

Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?