<< Chapter < Page Chapter >> Page >
1 t = 1 t a + 1 t b size 12{ { {1} over {t} } = { {1} over {t rSub { size 8{a} } } } + { {1} over {t rSub { size 8{b} } } } } {}

For reference, the exact lineshape function (assuming two equivalent groups being exchanged) is given by the Bloch Equation, [link] , where g is the intensity at frequency v , and where K is a normalization constant

g ( v ) = Kt ( v a + v b ) 2 [ 0 . 5 ( v a + v b ) v ] 2 + 2 t 2 ( v a v ) 2 ( v b v ) 2 size 12{g \( v \) = { { ital "Kt" \( v rSub { size 8{a} } +v rSub { size 8{b} } \) rSup { size 8{2} } } over { \[ 0 "." 5 \( v rSub { size 8{a} } +v rSub { size 8{b} } \) -v \] rSup { size 8{2} } +4p rSup { size 8{2} } t rSup { size 8{2} } \( v rSub { size 8{a} } -v \) rSup { size 8{2} } \( v rSub { size 8{b} } -v \) rSup { size 8{2} } } } } {}

Low temperatures to coalescence temperature

At low temperature (slow exchange), the spectrum has two peaks and Δ v >>t. As a result, [link] reduces to [link] , where T 2a’ is the spin-spin relaxation time. The linewidth of the peak for species a is defined by [link] .

g ( v ) a = g ( v ) b = KT 2a 1 + T 2a 2 ( v a v ) 2 size 12{g \( v \) rSub { size 8{a} } =g \( v \) rSub { size 8{b} } = { { ital "KT" rSub { size 8{2a} } } over {1+T rSub { size 8{2a} rSup { size 8{2} } } \( v rSub { size 8{a} } -v \) rSup { size 8{2} } } } } {}
( Δv a ) 1 / 2 = 1 π ( 1 T 2a + 1 t a ) size 12{ \( Dv rSub { size 8{a} } \) rSub { size 8{1/2} } = { {1} over {p} } \( { {1} over {T rSub { size 8{2a} } } } + { {1} over {t rSub { size 8{a} } } } \) } {}

Because the spin-spin relaxation time is difficult to determine, especially in inhomogeneous environments, rate constants at higher temperatures but before coalescence are preferable and more reliable.

The rate constant k can then be determined by comparing the linewidth of a peak with no exchange (low temp) with the linewidth of the peak with little exchange using [link] , where subscript e refers to the peak in the slightly higher temperature spectrum and subscript 0 refers to the peak in the no exchange spectrum.

k = π 2 [ ( Δv e ) 1 / 2 ( Δv 0 ) 1 / 2 ] size 12{k= { {p} over { sqrt {2} } } \[ \( Dv rSub { size 8{e} } \) rSub { size 8{1/2} } - \( Dv rSub { size 8{0} } \) rSub { size 8{1/2} } \] } {}

Additionally, k can be determined from the difference in frequency (chemical shift) using [link] , where Δ v 0 is the chemical shift difference in Hz at the no exchange temperature and Δ v e is the chemical shift difference at the exchange temperature.

k = π 2 ( Δv 0 2 Δv e 2 ) size 12{k= { {p} over { sqrt {2} } } \( Dv rSub { size 8{0} rSup { size 8{2} } } -Dv rSub { size 8{e} rSup { size 8{2} } } \) } {}

The intensity ratio method, [link] , can be used to determine the rate constant for spectra whose peaks have begun to merge, where r is the ratio between the maximum intensity and the minimum intensity, of the merging peaks, I max /I min

k = π 2 ( r + ( r 2 r ) 1 / 2 ) 1 / 2 size 12{k= { {p} over { sqrt {2} } } \( r+ \( r rSup { size 8{2} } -r \) rSup { size 8{1/2} } \) rSup { size 8{-1/2} } } {}

As mentioned earlier, the coalescence temperature, T c is the temperature at which the two peaks corresponding to the interchanging groups merge into one broad peak and [link] may be used to calculate the rate at coalescence.

k = πΔv 0 2 size 12{k= { {pDv rSub { size 8{0} } } over { sqrt {2} } } } {}

Higher temperatures

Beyond the coalescence temperature, interchange is so rapid (k>>t) that the spectrometer registers the two groups as equivalent and as one peak. At temperatures greater than that of coalescence, the lineshape equation reduces to [link] .

g ( v ) = KT 2 [ 1 + πT 2 ( v a + v b 2v ) 2 ] size 12{g \( v \) = { { ital "KT" rSub { size 8{2} } } over { \[ 1+pT rSub { size 8{2} } \( v rSub { size 8{a} } +v rSub { size 8{b} } -2v \) rSup { size 8{2} } \] } } } {}

As mentioned earlier, determination of T 2 is very time consuming and often unreliable due to inhomogeneity of the sample and of the magnetic field. The following approximation ( [link] ) applies to spectra whose signal has not completely fallen (in their coalescence).

k = 0 . Δv 2 ( Δv e ) 1 / 2 ( Δv 0 ) 1 / 2 size 12{k= { {0 "." 5pDv rSup { size 8{2} } } over { \( Dv rSub { size 8{e} } \) rSub { size 8{1/2} } - \( Dv rSub { size 8{0} } \) rSub { size 8{1/2} } } } } {}

Now that the rate constants have been extracted from the spectra, energetic parameters may now be calculated. For a rough measure of the activation parameters, only the spectra at no exchange and coalescence are needed. The coalescence temperature is determined from the NMR experiment, and the rate of exchange at coalescence is given by [link] . The activation parameters can then be determined from the Eyring equation ( [link] ), where k B is the Boltzmann constant, and where ΔH - TΔS = ΔG .

ln ( k T ) = ΔH RT ΔS R + ln ( k B h ) size 12{"ln" \( { {k} over {T} } \) = { {DH rSup { size 8{³} } } over { ital "RT"} } - { {DS rSup { size 8{³} } } over {R} } +"ln" \( { {k rSub { size 8{B} } } over {h} } \) } {}

For more accurate calculations of the energetics, the rates at different temperatures need to be obtained. A plot of ln(k/T) versus 1/T (where T is the temperature at which the spectrum was taken) will yield ΔH , ΔS , and ΔG . For a pictorial representation of these concepts, see [link] .

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask