<< Chapter < Page Chapter >> Page >

LEED experimental equipment

The typical diagram of a LEED system is shown in [link] . This system sends an electron beam to the surface of the sample, which comes from an electron gun behind a transparent hemispherical fluorescent screen. The electron gun consists of a heated cathode and a set of focusing lenses which send electrons at low energies. The electrons collide with the sample and diffract in different directions depending on the surface. Once diffracted, they are directed to the fluorescent screen. Before colliding with the screen, they must pass through four different grids (known as retarding grids), which contain a central hole through which the electron gun is inserted. The first grid is the nearest one to the sample and is connected to earth ground. A negative potential is applied to the second and third grids, which act as suppressor grids, given that they repel all electrons coming from non–elastic diffractions. These grids perform as filters, which only allow the highest–energy electrons to pass through; the electrons with the lowest energies are blocked in order to prevent a bad resolution image. The fourth grid protects the phosphor screen, which possesses positive charge from the negative grids. The remaining electrons collide with the luminescent screen, creating a phosphor glow (left side of [link] ), where the light intensity depends on the electron intensity.

instrument work
Schematic diagram of a typical LEED instrument and an example of the LEED pattern view by the CCD camera. Adapted from L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu, L. Li, Y. Zhang, G. Li, H. Zhou, W. Hofer, H. Gao, Nano Letters , 2013, 13 , 685. Copyright: American Chemical Society 2013.

For conventional systems of LEED, it is necessary a method of data acquisition. In the past, the general method for analyzing the diffraction pattern was to manually take several dozen pictures. After the development of computers, the photographs were scanned and digitalized for further analysis through computational software. Years later, the use of the charge–coupled device (CCD) camera was incorporated, allowing rapid acquisition, the possibility to average frames during the acquisition in order to improve the signal, the immediate digitalization and channeling of LEED pattern. In the case of the IV curves, the intensities of the points are extracted making use of special algorithms. [link] shows a commercial LEED spectrometer with the CCD camera, which has to be in an ultra-high vacuum vessel.

instrument optics
Commercial LEED Spectrometer (OCI Vacuum Micro engineering Inc).

LEED applications

We have previously talked about the discovery of LEED and its principles, along with the experimental setup of a LEED system. It was also mentioned that LEED provides qualitative and quantitative surface analysis. In the following section, we will discuss the most common applications of LEED and the information that one can obtain with this technique.

Study of adsorbates on the surface and disorder layers

One of the principal applications of LEED is the study of adsorbates on catalysts, due to its high surface sensitivity. In order to illustrate the application of LEED in the study of adsorbates. As an example, [link] a shows the surface of Cu (100) single crystal, the pristine material. This surface was cleaned carefully by various cycles of sputtering with ions of argon, followed by annealing. The LEED patter of Cu (100) presents four well-defined spots corresponding to its cubic unit cell.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask