<< Chapter < Page Chapter >> Page >

Supercritical properties of co 2

Because of its widespread use in SFC, it’s important to discuss what makes CO 2 an ideal supercritical fluid. One of the biggest limitations to most mobile phases in SFC is getting them to reach the critical point. This means extremely high temperatures and pressures, which is not easily attainable. The best gases for this are ones that can achieve a critical point at relatively low temperatures and pressures.

As seen from [link] , CO 2 has a critical temperature of approximately 31 °C and a critical pressure of around 73 atm. These are both relatively low numbers and are thus ideal for SFC. Of course, with every upside there exists a downside. In this case, CO 2 lacks polarity, which makes it difficult to use its mobile phase properties to elute polar samples. This is readily fixed with a modifier, which will be discussed later.

Phase diagram of CO 2 .

The instrument

SFC has a similar instrument setup to most other chromatography machines, notably HPLC. The functions of the parts are very similar, but it is important to understand them for the purposes of understanding the technique. [link] shows a schematic representation of a typical apparatus.

Box diagram of a SFC machine.

Columns

There are two main types of columns used with SFC: open tubular and packed, as seen below. The columns themselves are near identical to HPLC columns in terms of material and coatings. Open tubular columns are most used and are coated with a cross-linked silica material (powdered quartz, SiO 2 ) for a stationary phase. Column lengths range, but usually fall between 10 and 20 meters and are coated with less than 1 µm of silica stationary phase. [link] demonstrates the differences in the packing of the two columns.

Schematic visualization of the difference between (a) open tubular and (b) packed column.

Injector

Injectors act as the main site for the insertion of samples. There are many different kinds of injectors that depend on a multitude of factors. For packed columns, the sample must be small and the exact amount depends on the column diameter. For open tubular columns, larger volumes can be used. In both cases, there are specific injectors that are used depending on how the sample needs to be placed in the instrument. A loop injector is used mainly for preliminary testing. The sample is fed into a chamber that is then flushed with the supercritical fluid and pushed down the column. It uses a low-pressure pump before proceeding with the full elution at higher pressures. An inline injector allows for easy control of sample volume. A high-pressure pump forces the (specifically measured) sample into a stream of eluent, which proceeds to carry the sample through the column. This method allows for specific dilutions and greater flexibility. For samples requiring no dilution or immediate interaction with the eluent, an in-column injector is useful. This allows the sample to be transferred directly into the packed column and the mobile phase to then pass through the column.

Pump

The existence of a supercritical fluid, as discussed previously, depends on high temperatures and high pressures. The pump is responsible for delivering the high pressures. By pressurizing the gas (or liquid), it can cause the substance to become dense enough to exhibit signs of the desired supercritical fluid. Because pressure couples with heat to create the supercritical fluid, the two are usually very close together on the instrument.

Questions & Answers

what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
what is chemistry
Imoh Reply
what is chemistry
Damilola
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask