<< Chapter < Page Chapter >> Page >

Size exclusion chromatography

It is a chromatographic method that separate the molecules in the solutions based on the size (hydrodynamic volume). This column is often used for the separation of macromolecules and of macromolecules from small molecules. After the analyte is injected into the column, molecules smaller than he pore size of the stationary phase enter the porous particles during the separation and flow through he intricate channels of the stationary phase. Thus smaller components have a longer path to traverse and elute from the column later than the larger ones. Since the molecular volume is related to molecular weight, it is expected that retention volume will depend to some degree on the molecular weight of the polymeric materials. The relation between the retention time and the molecular weight is shown in [link] .

Graph showing the relationship between the retention time and molecular weight in size exclusion chromatography.

Usually the type of HPLC separation method to use depends on the chemical nature and physicochemical parameters of the samples. [link] shows a flow chart of preliminary selection for the separation method according to the properties of the analyte.

Diagram showing the sample properties related to the selection of HPLC type of analysis.

Detectors

Detectors that are commonly used for liquid chromatography include ultraviolet-visible absorbance detectors, refractive index detectors, fluorescence detectors, and mass spectrometry. Regardless of the class, a LC detector should ideally have the characteristics of about 10 -12 -10 -11 g/mL, and a linear dynamic range of five or six orders. The principal characteristics of the detectors to be evaluated include dynamic range, response index or linearity, linear dynamic range, detector response, detector sensitivity, etc.

Among these detectors, the most economical and popular methods are UV and refractive index (RI) detectors. They have rather broad selectivity reasonable detection limits most of the time. The RI detector was the first detector available for commercial use. This method is particularly useful in the HPLC separation according to size, and the measurement is directly proportional to the concentration of polymer and practically independent of the molecular weight. The sensitivity of RI is 10 -6 g/mL, the linear dynamic range is from 10 -6 to 10 -4 g/mL, and the response index is between 0.97 and 1.03.

UV detectors respond only to those substances that absorb UV light at the wavelength of the source light. A great many compounds absorb light in the UV range (180-350 nm) including substances having one or more double bonds and substances having unshared electrons. and the relationship between the intensity of UV light transmitted through the cell and solute concentration is given by Beer’s law, [link] and [link] .

Where I 0 is the intensity of the light entering the cell, and I T is the light transmitted through the cell, l is the path length of the cell, c is the concentration of the solute, and k is the molar absorption coefficient of the solute. UV detectors include fixed wavelength UV detector and multi wavelength UV detector. The fixed wavelength UV detector has sensitivity of 5*10 -8 g/mL, has linear dynamic range between 5*10 -8 and 5* 10-4 g/mL, and the response index is between 0.98 and 1.02. The multi-wavelength UV detector has sensitivity of 10 -7 g/mL, the linear dynamic range is between 5*10 -7 and 5*10 -4 g/mL, and the response index is from 0.97 to 1.03. UV detectors could be used effectively for the reverse-phase separations and ion exchange chromatography. UV detectors have high sensitivity, are economically affordable, and easy to operate. Thus UV detector is the most common choice of detector for HPLC.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask