<< Chapter < Page Chapter >> Page >
A drying oven with temperature set above the temperature of evaporation for water at 105 °C.

Picking the sample

Picking the sample is arguably the most important step in determining the lithology ( [link] ). During this step you will create a sample uniformity to eliminate random minerals, macro contaminates such as wood, and dropstones that dropped into your sediment depth when the sediment was drilled. You will also be able to get a general judgment as to the lithology after picking, though further analysis is needed if chemical composition is desired. Remove sample from drying oven. Take a piece of weighing paper and weigh out 5-10 g of sample. Use a light microscope to determine whether most of the sample is either silt, clay, silty-clay, or sand.

  • Clay grains will have a gray coloration with large flat sub-surfaces and less angulation. Clay will easily deform under pressure from forceps.
  • Silt grains will be darker than clay and will have specks that shine when the grain is rotated. Texture is long pieces with jagged edges. Silt is harder in consistency.
  • Silty clay is a heterogenous mixture (half and half mixture) of the above.
  • Sand is defined as larger grain size, lighter and varied coloration, and many crystalline substructures. Sand is hard to deform with the forceps.
A light microscope being used to 'pick' the sample. The sample is being separated according to the dominant lithology in preparation for chemical analysis.

Pelleting the sample

To prepare your sample for X-ray fluorescence (XRF) analysis you will need to prepare a sample pellet. To pellet your sample you will need a mortar and pestle, pellet binder such as Cerox, a scapula to remove binder, a micro scale, a pellet press with housing, and a pellet tin cup. Measure out and pour 2-4 g of sample into your mortar. Measure out and add 50% of your sample weight of pellet binder. For example, if your sample weight was 2 g, add 1 g of binder. Grind the sample into a fine, uniform powder, ensuring that all of the binder is thoroughly mixed with the sample ( [link] ).

A mortar and pestle being used to grind the sample to a powder for pelleting in the pellet press. A binding agent (Cereox) is also added using the scapula.

Drop a sample of tin foil into the press housing. Pour sample into the tin foil, and then gently tap the housing against a hard surface two to three times to ensure sample settles into the tin. Place the top press disk into the channel. Place the press housing into the press, oriented directly under the pressing arm. Crank the lever on the press until the pressure gauge reads 15 tons ( [link] ). Wait for one minute, then twist the pressure release valve and remove the press housing from the press. Reverse the press and apply the removal cap to the bottom of the press. Place the housing into the press bottom side up and manually apply pressure by turning the crank on top of the press until the sample pops out of the housing. Retrieve the pelleted sample ( [link] ). The pelleted sample is now ready for X-ray fluorescence analysis (XRF).

A pellet press being pressurized to 15 tons.
A completed pellet after pressing.

Xrf analysis

Place the sample pellet into the XRF ( [link] and [link] ) and close the XRF hood. The XRF obtain the spectrum from the associated computer.

A dog sitting on a bed
A Spectro XEPOS X-Ray fluorescence spectrometer.
The inside of the spectrometer where the sample pellets are placed for analysis.

The XRF spectrum is a plot of energy and intensity. The software equipped with the XRF will be pre-programmed to recognize the characteristic energies associated with the X-ray emissions of the elements. The XRF functions by shooting a beam of high energy photons that are absorbed by the atoms of the sample. The inner shell electrons of sample atoms are ejected. This leaves the atom in an excited state, with a vacancy in the inner shell. Outer shell electrons then fall into the vacancy, emitting photons with energy equal to the energy difference between these two energy levels. Each element has a unique set of energy levels, therefore each element emits a pattern of X-rays characteristic of that element. The intensity of these characteristic X-rays increases with the concentration of the corresponding element leading to higher counts and higher peaks on the spectrum ( [link] ).

The XRF spectrum showing the chemical composition of the sample.


  • http://www.usbr.gov/pmts/geology/geolman/chap04.pdf
  • http://petrowiki.org/Lithology_and_rock_type_determination
  • E. H. Williams, A manual of Lithology: Treating of the Principles of the Science with a Special Reference to Megascopic Analysis , Inman Press (2008).

Questions & Answers

Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
yes that's correct
I think
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
analytical skills graphene is prepared to kill any type viruses .
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
advantages of NAA
Sai Reply
how I can reaction of mercury?
Sham Reply

Get the best Physical methods in ch... course in your pocket!

Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?