<< Chapter < Page Chapter >> Page >

Transmission and fluorescence modes

X-ray Absorption measurements can be performed in several modes: transmission, fluorescence and electron yield; where the two first are the most common. The choice of the most appropriate mode to use in one experiment is a crucial decision.

The transmission mode is the most used because it only implies the measure of the X-ray flux before and after the beam passes the sample. Therefore, the adsorption coefficient is defined as [link] . Transmission experiments are standard for hard X-rays, because the use of soft X-rays implies the use the samples thinner than 1 μm . Also, this mode should be used for concentrated samples. The sample should have the right thickness and be uniform and free of pinholes.

μ E = ln I 0 I size 12{μ rSub { size 8{E} } ="ln" left ( { {I rSub { size 8{0} } } over {I} } right )} {}

The fluorescence mode measures the incident flux I 0 and the fluorescence X-rays I f that are emitted following the X-ray absorption event. Usually the fluorescent detector is placed at 90° to the incident beam in the horizontal plane, with the sample at an angles, commonly 45°, with respect to the beam, because in that position there is not interference generated because of the initial X-ray flux ( I 0 ). The use of fluorescence mode is preferred for thicker samples or lower concentrations, even ppm concentrations or lower. For a highly concentrated sample, the fluorescence X-rays are reabsorbed by the absorber atoms in the sample, causing an attenuation of the fluorescence signal, it effect is named as self-absorption and is one of the most important concerns in the use of this mode.

Sample preparation for xas

Sample requirements

Uniformity

The samples should have a uniform distribution of the absorber atom, and have the correct absorption for the measurement. The X-ray beam typically probes a millimeter-size portion of the sample. This volume should be representative of the entire sample.

Thickness.

For transmission mode samples, the thickness of the sample is really important. It supposes to be a sample with a given thickness, t , where the total adsorption of the atoms is less than 2.5 adsorption lengths, µ E t ≈ 2.5; and the partial absorption due to the absorber atoms is around one absorption length ∆ µ E t ≈ 1, which corresponds to the step edge.

The thickness to give ∆ µ E t = 1 is as [link] . where ρ is the compound density, n is the elemental stoichiometry, M is the atomic mass, σ E is the adsorption cross-section in barns/atom (1 barn = 10 -24 cm 2 ) tabulated in McMaster tables, and E + and E - are the just above and below the energy edge. This calculation can be accomplished using the free download software HEPHAESTUS.

t = 1 Δμ = 1 . 66 i n i M i ρ i n i σ i E + σ i E size 12{t= { {1} over {Δμ} } = { {1 "." "66" Sum cSub { size 8{i} } {n rSub { size 8{i} } M rSub { size 8{i} } } } over {ρ Sum cSub { size 8{i} } {n rSub { size 8{i} } left [σ rSub { size 8{i} } left (E rSub { size 8{+{}} } right ) - σ rSub { size 8{i} } left (E rSub { size 8{ - {}} } right ) right ]} } } } {}

Total x-ray adsorption.

For non-concentrate samples, the total X-ray adsorption of the sample is the most important. It should be related to the area concentration of the sample (ρ t , in g/cm 2 ). The area concentration of the sample multiplied by the difference of the mass adsorption coefficient ( ∆µ E ) give the edge step, where a desired value to obtain a good measure is a edge step equal to one, (∆µ E /ρ)ρ t ≈ 1.

The difference of the mass adsorption coefficient is given by [link] , where ( µ E /ρ) i is the mass adsorption coefficient just above (E+) and below (E-) of the edge energy and f i is the mass fraction of the element i . Multiplying the area concentration, ρ t, for the cross-sectional area of the sample holder, amount of sample needed is known.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask