<< Chapter < Page Chapter >> Page >
Three graphs of E versus R are shown. Figure a has a curve formed by two almost vertical lines which come down, turn to the right and become almost horizontal. They converge to form a single line. Figure b has a similar curve, but there are two additional lines between the lines present in figure a. Figure c is similar to figure a with the area between the lines shaded.
The dependence of energy-level splitting on the average distance between (a) two atoms, (b) four atoms, and (c) a large number of atoms. For a large number of electrons, a continuous band of energies is produced.
Figure shows three shaded rectangles, one on top of the other, separated by gaps. The lowest one is labeled 1s, the middle one is 2s and the top one is 2p. 1s and 2s are the same height, 2p is taller. All have the same width. To the left of the rectangles is an arrow labeled energy pointing up.
A simple representation of the energy structure of a solid. Electrons belong to energy bands separated by energy gaps.

Each energy band is separated from the other by an energy gap    . The electrical properties of conductors and insulators can be understood in terms of energy bands and gaps. The highest energy band that is filled is known as a valence band    . The next available band in the energy structure is known as a conduction band    . In a conductor, the highest energy band that contains electrons is partially filled, whereas in an insulator, the highest energy band containing electrons is completely filled. The difference between a conductor and insulator is illustrated in [link] .

A conductor differs from an insulator in how its electrons respond to an applied electric field. If a significant number of electrons are set into motion by the field, the material is a conductor. In terms of the band model, electrons in the partially filled conduction band gain kinetic energy from the electric field by filling higher energy states in the conduction band. By contrast, in an insulator, electrons belong to completely filled bands. When the field is applied, the electrons cannot make such transitions (acquire kinetic energy from the electric field) due to the exclusion principle. As a result, the material does not conduct electricity.

Two figure have a rectangle at the bottom labeled valence band, a space in the middle labeled energy gap and a rectangle at the top labeled conduction band. In figure a, which is labeled conductor: valance band filled, conduction band unfilled, the bottom rectangle is shaded and the top one is shaded only in the lower half. In figure b, which is labeled insulator: valance band filled, conduction band filled, both rectangles are fully shaded.
Comparison of a conductor and insulator. The highest energy band is partially filled in a conductor but completely filled in an insulator.

Visit this simulation to learn about the origin of energy bands in crystals of atoms and how the structure of bands determines how a material conducts electricity. Explore how band structure creates a lattice of many wells.

A semiconductor    has a similar energy structure to an insulator except it has a relatively small energy gap between the lowest completely filled band and the next available unfilled band. This type of material forms the basis of modern electronics. At T = 0 K , the semiconductor and insulator both have completely filled bands. The only difference is in the size of the energy gap (or band gap ) E g between the highest energy band that is filled (the valence band) and the next-higher empty band (the conduction band). In a semiconductor, this gap is small enough that a substantial number of electrons from the valence band are thermally excited into the conduction band at room temperature. These electrons are then in a nearly empty band and can respond to an applied field. As a general rule of thumb, the band gap of a semiconductor is about 1 eV. (See [link] for silicon.) A band gap of greater than approximately 1 eV is considered an insulator. For comparison, the energy gap of diamond (an insulator) is several electron-volts.

Note: Except for diamond, the materials listed are all semiconductors.
Energy gap for various materials at 300 k
Material Energy Gap E g ( eV )
Si 1.14
Ge 0.67
GaAs 1.43
GaP 2.26
GaSb 0.69
InAs 0.35
InP 1.35
InSb 0.16
C ( diamond ) 5.48

Summary

  • The energy levels of an electron in a crystal can be determined by solving Schrödinger’s equation for a periodic potential and by studying changes to the electron energy structure as atoms are pushed together from a distance.
  • The energy structure of a crystal is characterized by continuous energy bands and energy gaps.
  • The ability of a solid to conduct electricity relies on the energy structure of the solid.

Conceptual questions

What are the two main approaches used to determine the energy levels of electrons in a crystal?

(1) Solve Schrödinger’s equation for the allowed states and energies. (2) Determine energy levels for the case of a very large lattice spacing and then determine the energy levels as this spacing is reduced.

Got questions? Get instant answers now!

Describe two features of energy levels for an electron in a crystal.

Got questions? Get instant answers now!

How does the number of energy levels in a band correspond to the number, N , of atoms.

For N atoms spaced far apart, there are N different wave functions, all with the same energy (similar to the case of an electron in the double well of H 2 ) . As the atoms are pushed together, the energies of these N different wave functions are split. By the exclusion principle, each electron must each have a unique set of quantum numbers, so the N atoms bringing N electrons together must have at least N states.

Got questions? Get instant answers now!

Why are some materials very good conductors and others very poor conductors?

Got questions? Get instant answers now!

Why are some materials semiconductors?

For a semiconductor, there is a relatively large energy gap between the lowest completely filled band and the next available unfilled band. Typically, a number of electrons traverse the gap and therefore the electrical conductivity is small. The properties of a semiconductor are sensitivity to temperature: As the temperature is increased, thermal excitations promote charge carriers from the valence band across the gap and into the conduction band.

Got questions? Get instant answers now!

Why does the resistance of a semiconductor decrease as the temperature increases?

Got questions? Get instant answers now!

Problems

For a one-dimensional crystal, write the lattice spacing ( a ) in terms of the electron wavelength.

Got questions? Get instant answers now!

What is the main difference between an insulator and a semiconductor?

For an insulator, the energy gap between the valence band and the conduction band is larger than for a semiconductor.

Got questions? Get instant answers now!

What is the longest wavelength for a photon that can excite a valence electron into the conduction band across an energy gap of 0.80 eV?

Got questions? Get instant answers now!

A valence electron in a crystal absorbs a photon of wavelength, λ = 0.300 nm . This is just enough energy to allow the electron to jump from the valence band to the conduction band. What is the size of the energy gap?

4.13 keV

Got questions? Get instant answers now!

Questions & Answers

what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
What are the treatment for autism?
Magret Reply
hello. autism is a umbrella term. autistic kids have different disorder overlapping. for example. a kid may show symptoms of ADHD and also learning disabilities. before treatment please make sure the kid doesn't have physical disabilities like hearing..vision..speech problem. sometimes these
Jharna
continue.. sometimes due to these physical problems..the diagnosis may be misdiagnosed. treatment for autism. well it depends on the severity. since autistic kids have problems in communicating and adopting to the environment.. it's best to expose the child in situations where the child
Jharna
child interact with other kids under doc supervision. play therapy. speech therapy. Engaging in different activities that activate most parts of the brain.. like drawing..painting. matching color board game. string and beads game. the more you interact with the child the more effective
Jharna
results you'll get.. please consult a therapist to know what suits best on your child. and last as a parent. I know sometimes it's overwhelming to guide a special kid. but trust the process and be strong and patient as a parent.
Jharna
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask