<< Chapter < Page Chapter >> Page >
L = e 2 4 π ε 0 Z E R .

We see from this estimate that the higher the energy of α -particle, the narrower the width of the barrier that it is to tunnel through. We also know that the width of the potential barrier is the most important parameter in tunneling probability. Thus, highly energetic α -particles have a good chance to escape the nucleus, and, for such nuclei, the nuclear disintegration half-life is short. Notice that this process is highly nonlinear, meaning a small increase in the α -particle energy has a disproportionately large enhancing effect on the tunneling probability and, consequently, on shortening the half-life. This explains why the half-life of polonium that emits 8-MeV α -particles is only hundreds of milliseconds and the half-life of uranium that emits 4-MeV α -particles is billions of years.

The potential U of r is plotted as a function of r. For r less than R, U of r is constant and negative. At r = R, the potential rises vertically to some maximum positive value, then decays toward zero. The area under the curve is shaded. U of r equals E at r equal to R sub 0. A horizontal dashed line at E=E and a vertical dashed line at r=R sub 0 are shown.
The potential energy barrier for an α -particle bound in the nucleus: To escape from the nucleus, an α -particle with energy E must tunnel across the barrier from distance R to distance R 0 away from the center.

Field emission

Field emission is a process of emitting electrons from conducting surfaces due to a strong external electric field that is applied in the direction normal to the surface ( [link] ). As we know from our study of electric fields in earlier chapters, an applied external electric field causes the electrons in a conductor to move to its surface and stay there as long as the present external field is not excessively strong. In this situation, we have a constant electric potential throughout the inside of the conductor, including its surface. In the language of potential energy, we say that an electron inside the conductor has a constant potential energy U ( x ) = U 0 (here, the x means inside the conductor). In the situation represented in [link] , where the external electric field is uniform and has magnitude E g , if an electron happens to be outside the conductor at a distance x away from its surface, its potential energy would have to be U ( x ) = e E g x (here, x denotes distance to the surface). Taking the origin at the surface, so that x = 0 is the location of the surface, we can represent the potential energy of conduction electrons in a metal as the potential energy barrier shown in [link] . In the absence of the external field, the potential energy becomes a step barrier defined by U ( x 0 ) = U 0 and by U ( x > 0 ) = 0 .

The potential U of r is plotted as a function of r. For r less than R, U of r is constant and negative. At r = R, the potential rises vertically to some maximum positive value, then decays toward zero. The area under the curve is shaded. U of r equals E at r equal to R sub 0. A horizontal dashed line at E=E and a vertical dashed line at r=R sub 0 are shown.
A normal-direction external electric field at the surface of a conductor: In a strong field, the electrons on a conducting surface may get detached from it and accelerate against the external electric field away from the surface.
U of x is plotted as a function of x. For x less than zero, U of x has a constant value of minus U sub zero. At x=0, U of x jumps to a value of zero. For x larger than zero, U of x equals minus e times E sub g times x. The area under the curve is shaded. The energy is a negative constant, shown as a dashed line, at a value of minus phi. U of x equals E at x equal phi divided by the quantity e times E sub g.
The potential energy barrier at the surface of a metallic conductor in the presence of an external uniform electric field E g normal to the surface: It becomes a step-function barrier when the external field is removed. The work function of the metal is indicated by ϕ .

When an external electric field is strong, conduction electrons at the surface may get detached from it and accelerate along electric field lines in a direction antiparallel to the external field, away from the surface. In short, conduction electrons may escape from the surface. The field emission    can be understood as the quantum tunneling of conduction electrons through the potential barrier at the conductor’s surface. The physical principle at work here is very similar to the mechanism of α -emission from a radioactive nucleus.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask