<< Chapter < Page Chapter >> Page >

Electron orbits

To obtain the size r n of the electron’s n th orbit and the electron’s speed v n in it, we turn to Newtonian mechanics. As a charged particle, the electron experiences an electrostatic pull toward the positively charged nucleus in the center of its circular orbit. This electrostatic pull is the centripetal force that causes the electron to move in a circle around the nucleus. Therefore, the magnitude of centripetal force is identified with the magnitude of the electrostatic force:

m e v n 2 r n = 1 4 π ε 0 e 2 r n 2 .

Here, e denotes the value of the elementary charge. The negative electron and positive proton have the same value of charge, | q | = e . When [link] is combined with the first quantization condition given by [link] , we can solve for the speed, v n , and for the radius, r n :

v n = 1 4 π ε 0 e 2 1 n
r n = 4 π ε 0 2 m e e 2 n 2 .

Note that these results tell us that the electron’s speed as well as the radius of its orbit depend only on the index n that enumerates the orbit because all other quantities in the preceding equations are fundamental constants. We see from [link] that the size of the orbit grows as the square of n . This means that the second orbit is four times as large as the first orbit, and the third orbit is nine times as large as the first orbit, and so on. We also see from [link] that the electron’s speed in the orbit decreases as the orbit size increases. The electron’s speed is largest in the first Bohr orbit, for n = 1 , which is the orbit closest to the nucleus. The radius of the first Bohr orbit is called the Bohr radius of hydrogen    , denoted as a 0 . Its value is obtained by setting n = 1 in [link] :

a 0 = 4 π ε 0 2 m e e 2 = 5.29 × 10 −11 m = 0.529 Å .

We can substitute a 0 in [link] to express the radius of the n th orbit in terms of a 0 :

r n = a 0 n 2 .

This result means that the electron orbits in hydrogen atom are quantized because the orbital radius takes on only specific values of a 0 , 4 a 0 , 9 a 0 , 16 a 0 , . . . given by [link] , and no other values are allowed.

Electron energies

The total energy E n of an electron in the n th orbit is the sum of its kinetic energy K n and its electrostatic potential energy U n . Utilizing [link] , we find that

K n = 1 2 m e v n 2 = 1 32 π 2 ε 0 2 m e e 4 2 1 n 2 .

Recall that the electrostatic potential energy of interaction between two charges q 1 and q 2 that are separated by a distance r 12 is ( 1 / 4 π ε 0 ) q 1 q 2 / r 12 . Here, q 1 = + e is the charge of the nucleus in the hydrogen atom (the charge of the proton), q 2 = e is the charge of the electron and r 12 = r n is the radius of the n th orbit. Now we use [link] to find the potential energy of the electron:

U n = 1 4 π ε 0 e 2 r n = 1 16 π 2 ε 0 2 m e e 4 2 1 n 2 .

The total energy of the electron is the sum of [link] and [link] :

E n = K n + U n = 1 32 π 2 ε 0 2 m e e 4 2 1 n 2 .

Note that the energy depends only on the index n because the remaining symbols in [link] are physical constants. The value of the constant factor in [link] is

E 0 = 1 32 π 2 ε 0 2 m e e 4 2 = 1 8 ε 0 2 m e e 4 h 2 = 2.17 × 10 −18 J = 13.6 eV .

It is convenient to express the electron’s energy in the n th orbit in terms of this energy, as

E n = E 0 1 n 2 .

Now we can see that the electron energies in the hydrogen atom are quantized because they can have only discrete values of E 0 , E 0 / 4 , E 0 / 9 , E 0 / 16 , . . . given by [link] , and no other energy values are allowed. This set of allowed electron energies is called the energy spectrum of hydrogen    ( [link] ). The index n that enumerates energy levels in Bohr’s model is called the energy quantum number    . We identify the energy of the electron inside the hydrogen atom with the energy of the hydrogen atom. Note that the smallest value of energy is obtained for n = 1 , so the hydrogen atom cannot have energy smaller than that. This smallest value of the electron energy in the hydrogen atom is called the ground state energy of the hydrogen atom    and its value is

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask