<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe two medical uses of nuclear technology
  • Explain the origin of biological effects due to nuclear radiation
  • List common sources of radiation and their effects
  • Estimate exposure for nuclear radiation using common dosage units

Nuclear physics is an integral part of our everyday lives ( [link] ). Radioactive compounds are used in to identify cancer, study ancient artifacts, and power our cities. Nuclear fusion also powers the Sun, the primary source of energy on Earth. The focus of this chapter is nuclear radiation. In this section, we ask such questions as: How is nuclear radiation used to benefit society? What are its health risks? How much nuclear radiation is the average person exposed to in a lifetime?

A photograph of a woman setting a mummy in a scanning machine.
Dr. Tori Randall, a curator at the San Diego Museum of Man, uses nuclear radiation to study a 500-year-old Peruvian child mummy. The origin of this radiation is the transformation of one nucleus to another. (credit: Samantha A. Lewis)

Medical applications

Medical use of nuclear radiation is quite common in today’s hospitals and clinics. One of the most important uses of nuclear radiation is the location and study of diseased tissue. This application requires a special drug called a radiopharmaceutical    . A radiopharmaceutical contains an unstable radioactive isotope. When the drug enters the body, it tends to concentrate in inflamed regions of the body. (Recall that the interaction of the drug with the body does not depend on whether a given nucleus is replaced by one of its isotopes, since this interaction is determined by chemical interactions.) Radiation detectors used outside the body use nuclear radiation from the radioisotopes to locate the diseased tissue. Radiopharmaceuticals are called radioactive tags    because they allow doctors to track the movement of drugs in the body. Radioactive tags are for many purposes, including the identification of cancer cells in the bones, brain tumors, and Alzheimer’s disease ( [link] ). Radioactive tags are also used to monitor the function of body organs, such as blood flow, heart muscle activity, and iodine uptake in the thyroid gland.

Two images of brains are shown. The one on the left has many red and orange areas and some blue areas. The one on the right is mostly blue with very small areas in red and yellow.
These brain images are produced using a radiopharmaceutical. The colors indicate relative metabolic or biochemical activity (red indicates high activity and blue indicates low activity). The figure on the left shows the normal brain of an individual and the figure on the right shows the brain of someone diagnosed with Alzheimer’s disease. The brain image of the normal brain indicates much greater metabolic activity (a larger fraction of red and orange areas). (credit: National Institutes of Health)

[link] lists some medical diagnostic uses of radiopharmaceuticals, including isotopes and typical activity ( A ) levels. One common diagnostic test uses iodine to image the thyroid, since iodine is concentrated in that organ. Another common nuclear diagnostic is the thallium scan for the cardiovascular system, which reveals blockages in the coronary arteries and examines heart activity. The salt TlCl can be used because it acts like NaCl and follows the blood. Note that [link] lists many diagnostic uses for 99m Tc , where “m” stands for a metastable state of the technetium nucleus. This isotope is used in many compounds to image the skeleton, heart, lungs, and kidneys. About 80 % of all radiopharmaceuticals employ 99m Tc because it produces a single, easily identified, 0.142-MeV γ ray and has a short 6.0-h half-life, which reduces radiation exposure.

Questions & Answers

in the wave equation y=Asin(kx-wt+¢) what does k and w stand for.
Kimani Reply
derivation of lateral shieft
James Reply
Hi
Amjad
Hi
Amjad
hi
ALFRED
how are you?
Amjad
hi
asif
hi
Imran
I'm fine
ALFRED
total binding energy of ionic crystal at equilibrium is
All Reply
How does, ray of light coming form focus, behaves in concave mirror after refraction?
Bishesh Reply
Refraction does not occur in concave mirror. If refraction occurs then I don't know about this.
Sushant
What is motion
Izevbogie Reply
Anything which changes itself with respect to time or surrounding
Sushant
good
Chemist
and what's time? is time everywhere same
Chemist
No
Sushant
how can u say that
Chemist
do u know about black hole
Chemist
Not so more
Sushant
Radioactive substance
DHEERAJ
These substance create harmful radiation like alpha particle radiation, beta particle radiation, gamma particle radiation
Sushant
But ask anything changes itself with respect to time or surrounding A Not any harmful radiation
DHEERAJ
explain cavendish experiment to determine the value of gravitational concept.
Celine Reply
For the question about the scuba instructor's head above the pool, how did you arrive at this answer? What is the process?
Evan Reply
as a free falling object increases speed what is happening to the acceleration
Success Reply
of course g is constant
Alwielland
acceleration also inc
Usman
which paper will be subjective and which one objective
jay
normal distributiin of errors report
Dennis
normal distribution of errors
Dennis
photo electrons doesn't emmit when electrons are free to move on surface of metal why?
Rafi Reply
What would be the minimum work function of a metal have to be for visible light(400-700)nm to ejected photoelectrons?
Mohammed Reply
give any fix value to wave length
Rafi
40 cm into change mm
Arhaan Reply
40cm=40.0×10^-2m =400.0×10^-3m =400mm. that cap(^) I have used above is to the power.
Prema
i.e. 10to the power -2 in the first line and 10 to the power -3 in the the second line.
Prema
there is mistake in my first msg correction is 40cm=40.0×10^-2m =400.0×10^-3m =400mm. sorry for the mistake friends.
Prema
40cm=40.0×10^-2m =400.0×10^-3m =400mm.
Prema
this msg is out of mistake. sorry friends​.
Prema
what is physics?
sisay Reply
why we have physics
Anil Reply
because is the study of mater and natural world
John
because physics is nature. it explains the laws of nature. some laws already discovered. some laws yet to be discovered.
Yoblaze
physics is the study of non living things if we added it with biology it becomes biophysics and bio is the study of living things tell me please what is this?
tahreem
physics is the study of matter,energy and their interactions
Buvanes
all living things are matter
Buvanes
why rolling friction is less than sliding friction
tahreem
thanks buvanas
tahreem
is this a physics forum
Physics Reply
explain l-s coupling
Depk Reply

Get the best University physics vol... course in your pocket!





Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask