# 11.1 Introduction to particle physics  (Page 2/22)

 Page 2 / 22

The fundamental forces may not be truly “fundamental” but may actually be different aspects of the same force. Just as the electric and magnetic forces were unified into an electromagnetic force, physicists in the 1970s unified the electromagnetic force with the weak nuclear force into an electroweak force    . Any scientific theory that attempts to unify the electroweak force and strong nuclear force is called a grand unified theory    , and any theory that attempts to unify all four forces is called a theory of everything    . We will return to the concept of unification later in this chapter.

## Classifications of elementary particles

A large number of subatomic particles exist in nature. These particles can be classified in two ways: the property of spin and participation in the four fundamental forces. Recall that the spin of a particle is analogous to the rotation of a macroscopic object about its own axis. These types of classification are described separately below.

## Classification by spin

Particles of matter can be divided into fermion     s and boson     s . Fermions have half-integral spin $\left(\frac{1}{2}\hslash ,\phantom{\rule{0.2em}{0ex}}\frac{3}{2}\hslash ,\phantom{\rule{0.2em}{0ex}}\text{…}\right)$ and bosons have integral spin $\left(0\hslash ,\phantom{\rule{0.2em}{0ex}}1\hslash ,2\hslash ,\text{…}\right).$ Familiar examples of fermions are electrons, protons, and neutrons. A familiar example of a boson is a photon. Fermions and bosons behave very differently in groups. For example, when electrons are confined to a small region of space, Pauli’s exclusion principle    states that no two electrons can occupy the same quantum-mechanical state. However, when photons are confined to a small region of space, there is no such limitation.

The behavior of fermions and bosons in groups can be understood in terms of the property of indistinguishability. Particles are said to be “indistinguishable” if they are identical to one another. For example, electrons are indistinguishable because every electron in the universe has exactly the same mass and spin as all other electrons—“when you’ve seen one electron, you’ve seen them all.” If you switch two indistinguishable particles in the same small region of space, the square of the wave function that describes this system and can be measured $\left(|\psi {|}^{2}\right)$ is unchanged. If this were not the case, we could tell whether or not the particles had been switched and the particle would not be truly indistinguishable. Fermions and bosons differ by whether the sign of the wave function ( $\psi$ )— not directly observable—flips:

$\begin{array}{c}\psi \to \text{−}\psi \phantom{\rule{0.2em}{0ex}}\text{(indistinguishable fermions),}\hfill \\ \psi \to +\psi \phantom{\rule{0.2em}{0ex}}\text{(indistinguishable bosons).}\hfill \end{array}$

Fermions are said to be “antisymmetric on exchange” and bosons are “symmetric on exchange.” Pauli’s exclusion principle is a consequence of exchange symmetry    of fermions—a connection developed in a more advanced course in modern physics. The electronic structure of atoms is predicated on Pauli’s exclusion principle and is therefore directly related to the indistinguishability of electrons.

## Classification by force interactions

Fermions can be further divided into quark     s and lepton     s . The primary difference between these two types of particles is that quarks interact via the strong force and leptons do not. Quarks and leptons (as well as bosons to be discussed later) are organized in [link] . The upper two rows (first three columns in purple) contain six quarks. These quarks are arranged into two particle families: up, charm, and top ( u , c , t ), and down, strange, and bottom ( d , s , b ). Members of the same particle family share the same properties but differ in mass (given in $\text{MeV/}{c}^{2}$ ). For example, the mass of the top quark is much greater than the charm quark, and the mass of the charm quark is much greater than the up quark. All quarks interact with one another through the strong nuclear force.

what is the difference between a molecule and atom
Atoms are single neutral particles. Molecules are neutral particles made of two or more atoms bonded together.
Manfred
what I'd dynamic propulsion
A body quadruples its momentum when its speed doubles.What was the initial speed in units of c.i.e..what was u/c ?
what is enthalpy?
a thermodynamic quantity equivalent to the total heat content of a system
RAMLA
proparty of tharmo dainamic
bloch
What is the meaning of Nuclear Fission?
what do you mean by dynamics single particles
عند قذف جسم إلى أعلى بسرعة إبتدائية فإنه سيصل إلى ارتفاع معين (أقصى ارتفاع) ثم يعود هابطاً نحو سطح الأرض .   إذا قُذِفَ جسم إلى أعلى ووجد أن سرعته 18 م / ث عندما قطع 1/4 المسافة التي تمثل أقصى ارتفاع سيصله فالمطلوب إيجاد السرعة التي قُذِف بها بالمتر / ث . إن هذه السرعة هي واحدة من الإجابات التالية
what is light
light is a kind of radiation That stimulates sight brightness a source of illumination.
kenneth
Electromagnet radiation creates space 7th, 8th, and 9th dimensions at the rate of c.
John
That is the reason that the speed of light is constant.
John
This creation of new space is "Dark Energy".
John
The first two sets of three dimensions, 1 through 6, are "Dark Matter".
John
As matter decays into luminous matter, a proton, a neutron, and an electron creat deuterium.
John
There are three sets of three protons, 9.
John
There are three sets of three neutrons, 9.
John
A free neutron decays into a proton, an electron, and a neutrino.
John
There are three sets of five neutrinoes, 15.
John
Neutrinoes are two dimensional.
John
A positron is composed of the first three dimensions.
John
An electron is composed of the second three dimensions.
John
What is photoelectric
light energy (photons) through semiconduction of N-P junction into electrical via excitation of silicon purified and cristalized into wafers with partially contaminated silicon to allow this N-P function to operate.
Michael
i.e. Solar pannel.
Michael
Photoelectric emission is the emission of electrons on a metal surface due to incident rays reflected on it
Benita
If you lie on a beach looking at the water with your head tipped slightly sideways, your polarized sunglasses do not work very well.Why not?
it has everything to do with the angle the UV sunlight strikes your sunglasses.
Jallal
this is known as optical physics. it describes how visible light, ultraviolet light and infrared light interact when they come into contact with physical matter. usually the photons or light upon interaction result in either reflection refraction diffraction or interference of the light.
Jallal
I hope I'm clear if I'm not please tell me to clarify further or rephrase
Jallal
what is bohrs model for hydrogen atom
hi
Tr
Hello
Youte
Hi
Nwangwu-ike
hi
Siddiquee
hi
Omar
helo
Mcjoi
what is the value of speed of light
1.79×10_¹⁹ km per hour
Swagatika
3×10^8
Benita
what r dwarf planet
what is energy
কাজের একক কী
Jasim
কাজের একক কী
Jasim
Energy is ability so capacity to do work.
kenneth
friction ka direction Kaise pata karte hai
friction is always in the opposite of the direction of moving object
Punia