<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe two main approaches to determining the energy levels of an electron in a crystal
  • Explain the presence of energy bands and gaps in the energy structure of a crystal
  • Explain why some materials are good conductors and others are good insulators
  • Differentiate between an insulator and a semiconductor

The free electron model explains many important properties of conductors but is weak in at least two areas. First, it assumes a constant potential energy within the solid. (Recall that a constant potential energy is associated with no forces.) [link] compares the assumption of a constant potential energy (dotted line) with the periodic Coulomb potential, which drops as −1 / r at each lattice point, where r is the distance from the ion core (solid line). Second, the free electron model assumes an impenetrable barrier at the surface. This assumption is not valid, because under certain conditions, electrons can escape the surface—such as in the photoelectric effect. In addition to these assumptions, the free electron model does not explain the dramatic differences in electronic properties of conductors, semiconductors, and insulators. Therefore, a more complete model is needed.

Figure shows three inverted U shaped structures in a row and two incomplete ones on either side of the row. There are red dots at the bottom between two consecutive figures, with plus signs below them. The distance between two consecutive dots is a. The shapes are labeled minus 1 by r. There is a dotted just above the shapes. This is labeled approximate constant potential energy.
The periodic potential used to model electrons in a conductor. Each ion in the solid is the source of a Coulomb potential. Notice that the free electron model is productive because the average of this field is approximately constant.

We can produce an improved model by solving Schrödinger’s equation for the periodic potential shown in [link] . However, the solution requires technical mathematics far beyond our scope. We again seek a qualitative argument based on quantum mechanics to find a way forward.

We first review the argument used to explain the energy structure of a covalent bond. Consider two identical hydrogen atoms so far apart that there is no interaction whatsoever between them. Further suppose that the electron in each atom is in the same ground state: a 1 s electron with an energy of −13.6 eV (ignore spin). When the hydrogen atoms are brought closer together, the individual wave functions of the electrons overlap and, by the exclusion principle, can no longer be in the same quantum state, which splits the original equivalent energy levels into two different energy levels. The energies of these levels depend on the interatomic distance, α ( [link] ).

If four hydrogen atoms are brought together, four levels are formed from the four possible symmetries—a single sine wave “hump” in each well, alternating up and down, and so on. In the limit of a very large number N of atoms, we expect a spread of nearly continuous bands of electronic energy levels in a solid (see [link] (c)). Each of these bands is known as an energy band    . (The allowed states of energy and wave number are still technically quantized, but for large numbers of atoms, these states are so close together that they are consider to be continuous or “in the continuum.”)

Energy bands differ in the number of electrons they hold. In the 1 s and 2 s energy bands, each energy level holds up to two electrons (spin up and spin down), so this band has a maximum occupancy of 2 N electrons. In the 2 p energy band, each energy level holds up to six electrons, so this band has a maximum occupancy of 6 N electrons ( [link] ).

Questions & Answers

what is the difference between a molecule and atom
Natanim Reply
Atoms are single neutral particles. Molecules are neutral particles made of two or more atoms bonded together.
what I'd dynamic propulsion
Elias Reply
A body quadruples its momentum when its speed doubles.What was the initial speed in units of c.i.e..what was u/c ?
Lekshmi Reply
what is enthalpy?
prabir Reply
a thermodynamic quantity equivalent to the total heat content of a system
proparty of tharmo dainamic
What is the meaning of Nuclear Fission?
Benita Reply
what do you mean by dynamics single particles
Peacekamei Reply
عند قذف جسم إلى أعلى بسرعة إبتدائية فإنه سيصل إلى ارتفاع معين (أقصى ارتفاع) ثم يعود هابطاً نحو سطح الأرض .   إذا قُذِفَ جسم إلى أعلى ووجد أن سرعته 18 م / ث عندما قطع 1/4 المسافة التي تمثل أقصى ارتفاع سيصله فالمطلوب إيجاد السرعة التي قُذِف بها بالمتر / ث . إن هذه السرعة هي واحدة من الإجابات التالية
Aml Reply
what is light
Ayebanifesunday Reply
light is a kind of radiation That stimulates sight brightness a source of illumination.
Electromagnet radiation creates space 7th, 8th, and 9th dimensions at the rate of c.
That is the reason that the speed of light is constant.
This creation of new space is "Dark Energy".
The first two sets of three dimensions, 1 through 6, are "Dark Matter".
As matter decays into luminous matter, a proton, a neutron, and an electron creat deuterium.
There are three sets of three protons, 9.
There are three sets of three neutrons, 9.
A free neutron decays into a proton, an electron, and a neutrino.
There are three sets of five neutrinoes, 15.
Neutrinoes are two dimensional.
A positron is composed of the first three dimensions.
An electron is composed of the second three dimensions.
What is photoelectric
Hsssan Reply
light energy (photons) through semiconduction of N-P junction into electrical via excitation of silicon purified and cristalized into wafers with partially contaminated silicon to allow this N-P function to operate.
i.e. Solar pannel.
Photoelectric emission is the emission of electrons on a metal surface due to incident rays reflected on it
If you lie on a beach looking at the water with your head tipped slightly sideways, your polarized sunglasses do not work very well.Why not?
Rakhi Reply
it has everything to do with the angle the UV sunlight strikes your sunglasses.
this is known as optical physics. it describes how visible light, ultraviolet light and infrared light interact when they come into contact with physical matter. usually the photons or light upon interaction result in either reflection refraction diffraction or interference of the light.
I hope I'm clear if I'm not please tell me to clarify further or rephrase
what is bohrs model for hydrogen atom
Swagatika Reply
what is the value of speed of light
Propessor Reply
1.79×10_¹⁹ km per hour
what r dwarf planet
Sivalakshmi Reply
what is energy
Isiguzo Reply
কাজের একক কী
কাজের একক কী
Energy is ability so capacity to do work.
friction ka direction Kaise pata karte hai
Rahul Reply
friction is always in the opposite of the direction of moving object
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now

Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?