<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Use the concepts of vibrational and rotational energy to describe energy transitions in a diatomic molecule
  • Explain key features of a vibrational-rotational energy spectrum of a diatomic molecule
  • Estimate allowed energies of a rotating molecule
  • Determine the equilibrium separation distance between atoms in a diatomic molecule from the vibrational-rotational absorption spectrum

Molecular energy levels are more complicated than atomic energy levels because molecules can also vibrate and rotate. The energies associated with such motions lie in different ranges and can therefore be studied separately. Electronic transitions are of order 1 eV, vibrational transitions are of order 10 −2 eV , and rotational transitions are of order 10 −3 eV . For complex molecules, these energy changes are difficult to characterize, so we begin with the simple case of a diatomic molecule.

According to classical mechanics, the energy of rotation of a diatomic molecule is given by

E r = L 2 2 I ,

where I is the moment of inertia and L is the angular momentum. According to quantum mechanics, the rotational angular momentum is quantized:

L = l ( l + 1 ) ( l = 0 , 1 , 2 , 3 ,... ) ,

where l is the orbital angular quantum number. The allowed rotational energy level    of a diatomic molecule is therefore

E r = l ( l + 1 ) 2 2 I = l ( l + 1 ) E 0 r ( l = 0 , 1 , 2 , 3 ,... ) ,

where the characteristic rotational energy of a molecule is defined as

E 0 r = 2 2 I .

For a diatomic molecule, the moment of inertia with reduced mass μ is

I = μ r 0 2 ,

where r 0 is the total distance between the atoms. The energy difference between rotational levels is therefore

Δ E r = E l + 1 E l = 2 ( l + 1 ) E 0 r .

A detailed study of transitions between rotational energy levels brought about by the absorption or emission of radiation (a so-called electric dipole transition    ) requires that

Δ l = ± 1 .

This rule, known as a selection rule    , limits the possible transitions from one quantum state to another. [link] is the selection rule for rotational energy transitions. It applies only to diatomic molecules that have an electric dipole moment. For this reason, symmetric molecules such as H 2 and N 2 do not experience rotational energy transitions due to the absorption or emission of electromagnetic radiation.

The rotational energy of hcl

Determine the lowest three rotational energy levels of a hydrogen chloride (HCl) molecule.


Hydrogen chloride (HCl) is a diatomic molecule with an equilibrium separation distance of 0.127 nm. Rotational energy levels depend only on the momentum of inertia I and the orbital angular momentum quantum number l (in this case, l = 0 , 1, and 2). The momentum of inertia depends, in turn, on the equilibrium separation distance (which is given) and the reduced mass, which depends on the masses of the H and Cl atoms.


First, we compute the reduced mass. If Particle 1 is hydrogen and Particle 2 is chloride, we have

μ = m 1 m 2 m 1 + m 2 = ( 1.0 u ) ( 35.4 u ) 1.0 u + 35.4 u = 0.97 u = 0.97 u ( 931.5 MeV c 2 1 u ) = 906 MeV c 2 .

The corresponding rest mass energy is therefore

μ c 2 = 9.06 × 10 8 eV .

This allows us to calculate the characteristic energy:

E 0 r = 2 2 I = 2 2 ( μ r 0 2 ) = ( c ) 2 2 ( μ c 2 ) r 0 2 = ( 197.3 eV · nm ) 2 2 ( 9.06 × 10 8 eV ) ( 0.127 nm ) 2 = 1.33 × 10 −3 eV .

(Notice how this expression is written in terms of the rest mass energy. This technique is common in modern physics calculations.) The rotational energy levels are given by

E r = l ( l + 1 ) 2 2 I = l ( l + 1 ) E 0 r ,

where l is the orbital quantum number. The three lowest rotational energy levels of an HCl molecule are therefore

l = 0 ; E r = 0 eV ( no rotation ) ,
l = 1 ; E r = 2 E 0 r = 2.66 × 10 −3 eV ,
l = 2 ; E r = 6 E 0 r = 7.99 × 10 −3 eV .


The rotational spectrum is associated with weak transitions (1/1000 to 1/100 of an eV). By comparison, the energy of an electron in the ground state of hydrogen is −13.6 eV .

Got questions? Get instant answers now!

Questions & Answers

A Pb wire wound in a tight solenoid of diameter of 4.0 mm is cooled to a temperature of 5.0 K. The wire is connected in series with a 50-Ωresistor and a variable source of emf. As the emf is increased, what value does it have when the superconductivity of the wire is destroyed?
Rupal Reply
how does colour appear in thin films
Nwjwr Reply
in the wave equation y=Asin(kx-wt+¢) what does k and w stand for.
Kimani Reply
derivation of lateral shieft
James Reply
total binding energy of ionic crystal at equilibrium is
All Reply
How does, ray of light coming form focus, behaves in concave mirror after refraction?
Bishesh Reply
Refraction does not occur in concave mirror. If refraction occurs then I don't know about this.
What is motion
Izevbogie Reply
Anything which changes itself with respect to time or surrounding
and what's time? is time everywhere same
how can u say that
do u know about black hole
Not so more
Radioactive substance
These substance create harmful radiation like alpha particle radiation, beta particle radiation, gamma particle radiation
But ask anything changes itself with respect to time or surrounding A Not any harmful radiation
explain cavendish experiment to determine the value of gravitational concept.
Celine Reply
 Cavendish Experiment to Measure Gravitational Constant. ... This experiment used a torsion balance device to attract lead balls together, measuring the torque on a wire and equating it to the gravitational force between the balls. Then by a complex derivation, the value of G was determined.
For the question about the scuba instructor's head above the pool, how did you arrive at this answer? What is the process?
Evan Reply
as a free falling object increases speed what is happening to the acceleration
Success Reply
of course g is constant
acceleration also inc
which paper will be subjective and which one objective
normal distributiin of errors report
normal distribution of errors
acceleration also increases
there are two correct answers depending on whether air resistance is considered. none of those answers have acceleration increasing.
Acceleration is the change in velocity over time, hence it's the derivative of the velocity with respect to time. So this case would depend on the velocity. More specifically the change in velocity in the system.
photo electrons doesn't emmit when electrons are free to move on surface of metal why?
Rafi Reply
What would be the minimum work function of a metal have to be for visible light(400-700)nm to ejected photoelectrons?
Mohammed Reply
give any fix value to wave length
40 cm into change mm
Arhaan Reply
40cm=40.0×10^-2m =400.0×10^-3m =400mm. that cap(^) I have used above is to the power.
i.e. 10to the power -2 in the first line and 10 to the power -3 in the the second line.
there is mistake in my first msg correction is 40cm=40.0×10^-2m =400.0×10^-3m =400mm. sorry for the mistake friends.
40cm=40.0×10^-2m =400.0×10^-3m =400mm.
this msg is out of mistake. sorry friends​.
what is physics?
sisay Reply
why we have physics
Anil Reply
because is the study of mater and natural world
because physics is nature. it explains the laws of nature. some laws already discovered. some laws yet to be discovered.
physics is the study of non living things if we added it with biology it becomes biophysics and bio is the study of living things tell me please what is this?
physics is the study of matter,energy and their interactions
all living things are matter
why rolling friction is less than sliding friction
thanks buvanas
Practice Key Terms 4

Get the best University physics vol... course in your pocket!

Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?