<< Chapter < Page Chapter >> Page >
E transfer = 5.14 eV 3.62 eV = 1.52 eV .

The positive sodium ion and negative chloride ion experience an attractive Coulomb force. The potential energy associated with this force is given by

U coul = k e 2 r 0 ,

where k e 2 = 1.440 eV-nm and r 0 is the distance between the ions.

As the sodium and chloride ions move together (“descend the potential energy hill”), the force of attraction between the ions becomes stronger. However, if the ions become too close, core-electron wave functions in the two ions begin to overlap. Due to the exclusion principle, this action promotes the core electrons—and therefore the entire molecule—into a higher energy state. The equilibrium separation distance    (or bond length ) between the ions occurs when the molecule is in its lowest energy state. For diatomic NaCl, this distance is 0.236 nm. [link] shows the total energy of NaCl as a function of the distance of separation between ions.

Graph of energy in eV versus separation in nm. The curve starts at an x value of around 0.1 and a y value of between 3 and 4. The first branch dips down sharply till x equal to 0.236 nm and y equal to 4.26 eV. From the trough, the second branch rises gradually and almost evens out just above y equal to 0. The curve crosses the x axis at 0.941 nm. The area bounded by the curve is shaded. To the right of the first branch of the curve is another curve labeled Pauli repulsion. This is cut off at y = 0 and x approximately equal to 0.3. A third curve, has a slope, which is similar to the second branch of the first curve and is below it. This is labeled Coulomb potential. A horizontal line at y equal to 1.52 is labeled ionization minus electron affinity is equal to 1.52 eV.
Graph of energy versus ionic separation for sodium chloride. Equilibrium separation occur when the total energy is a minimum ( 4.36 eV ) .

The total energy required to form a single salt unit is

U form = E transfer + U coul + U ex ,

where U ex is the energy associated with the repulsion between core electrons due to Pauli’s exclusion principle. The value of U form must be negative for the bond to form spontaneously. The dissociation energy    is defined as the energy required to separate the unit into its constituent ions, written

U diss = U form

Every diatomic formula unit has its own characteristic dissociation energy and equilibrium separation length. Sample values are given in [link] .

Bond length
Molecule Dissociation Energy ( eV ) Equilibrium Separation ( nm ) ( Bond length )
NaCl 4.26 0.236
NaF 4.99 0.193
NaBr 3.8 0.250
NaI 3.1 0.271
NaH 2.08 0.189
LiCl 4.86 0.202
LiH 2.47 0.239
LiI 3.67 0.238
KCl 4.43 0.267
KBr 3.97 0.282
RbF 5.12 0.227
RbCl 4.64 0.279
CsI 3.57 0.337
H-H 4.5 0.075
N-N 9.8 0.11
O-O 5.2 0.12
F-F 1.6 0.14
Cl-Cl 2.5 0.20

The energy of salt

What is the dissociation energy of a salt formula unit (NaCl)?

Strategy

Sodium chloride (NaCl) is a salt formed by ionic bonds. The energy change associated with this bond depends on three main processes: the ionization of Na; the acceptance of the electron from a Na atom by a Cl atom; and Coulomb attraction of the resulting ions ( Na + and Cl ). If the ions get too close, they repel due to the exclusion principle (0.32 eV). The equilibrium separation distance is r 0 = 0.236 nm .

Solution

The energy change associated with the transfer of an electron from Na to Cl is 1.52 eV, as discussed earlier in this section. At equilibrium separation, the atoms are r 0 = 0.236 nm apart. The electrostatic potential energy of the atoms is

U coul = k e 2 r 0 = 1.44 eV · nm 0.236 nm = −6.10 eV .

The total energy difference associated with the formation of a NaCl formula unit is

E form = E xfr + U coul + U ex = 1.52 eV + ( 6.10 eV ) + 0.32 eV = 4.26 eV .

Therefore, the dissociated energy of NaCl is 4.26 eV.

Significance

The formation of a NaCl formula unit by ionic bonding is energetically favorable. The dissociation energy, or energy required to separate the NaCl unit into Na + and Cl ions is 4.26 eV, consistent with [link] .

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask