<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the model of the quantum harmonic oscillator
  • Identify differences between the classical and quantum models of the harmonic oscillator
  • Explain physical situations where the classical and the quantum models coincide

Oscillations are found throughout nature, in such things as electromagnetic waves, vibrating molecules, and the gentle back-and-forth sway of a tree branch. In previous chapters, we used Newtonian mechanics to study macroscopic oscillations, such as a block on a spring and a simple pendulum. In this chapter, we begin to study oscillating systems using quantum mechanics. We begin with a review of the classic harmonic oscillator.

The classic harmonic oscillator

A simple harmonic oscillator is a particle or system that undergoes harmonic motion about an equilibrium position, such as an object with mass vibrating on a spring. In this section, we consider oscillations in one-dimension only. Suppose a mass moves back-and-forth along the

x -direction about the equilibrium position, x = 0 . In classical mechanics, the particle moves in response to a linear restoring force given by F x = k x , where x is the displacement of the particle from its equilibrium position. The motion takes place between two turning points, x = ± A , where A denotes the amplitude of the motion. The position of the object varies periodically in time with angular frequency ω = k / m , which depends on the mass m of the oscillator and on the force constant k of the net force, and can be written as

x ( t ) = A cos ( ω t + ϕ ) .

The total energy E of an oscillator is the sum of its kinetic energy K = m u 2 / 2 and the elastic potential energy of the force U ( x ) = k x 2 / 2 ,

E = 1 2 m u 2 + 1 2 k x 2 .

At turning points x = ± A , the speed of the oscillator is zero; therefore, at these points, the energy of oscillation is solely in the form of potential energy E = k A 2 / 2 . The plot of the potential energy U ( x ) of the oscillator versus its position x is a parabola ( [link] ). The potential-energy function is a quadratic function of x , measured with respect to the equilibrium position. On the same graph, we also plot the total energy E of the oscillator, as a horizontal line that intercepts the parabola at x = ± A . Then the kinetic energy K is represented as the vertical distance between the line of total energy and the potential energy parabola.

A graph of the potential U of x and energy E is shown. The vertical axis is energy and the horizontal axis is x. The energy E is positive and constant. The potential U of x is the function one half k times x squared, a concave up parabola whose value is zero at x=0. The region below the U of x curve is shaded. U of x is equal to E at x equal to minus A and x equal to plus A.
The potential energy well of a classical harmonic oscillator: The motion is confined between turning points at x = A and at x = + A . The energy of oscillations is E = k A 2 / 2 .

In this plot, the motion of a classical oscillator is confined to the region where its kinetic energy is nonnegative, which is what the energy relation [link] says. Physically, it means that a classical oscillator can never be found beyond its turning points, and its energy depends only on how far the turning points are from its equilibrium position. The energy of a classical oscillator changes in a continuous way. The lowest energy that a classical oscillator may have is zero, which corresponds to a situation where an object is at rest at its equilibrium position. The zero-energy state of a classical oscillator simply means no oscillations and no motion at all (a classical particle sitting at the bottom of the potential well in [link] ). When an object oscillates, no matter how big or small its energy may be, it spends the longest time near the turning points, because this is where it slows down and reverses its direction of motion. Therefore, the probability of finding a classical oscillator between the turning points is highest near the turning points and lowest at the equilibrium position. (Note that this is not a statement of preference of the object to go to lower energy. It is a statement about how quickly the object moves through various regions.)

Questions & Answers

A Pb wire wound in a tight solenoid of diameter of 4.0 mm is cooled to a temperature of 5.0 K. The wire is connected in series with a 50-Ωresistor and a variable source of emf. As the emf is increased, what value does it have when the superconductivity of the wire is destroyed?
Rupal Reply
how does colour appear in thin films
Nwjwr Reply
in the wave equation y=Asin(kx-wt+¢) what does k and w stand for.
Kimani Reply
derivation of lateral shieft
James Reply
how are you?
I'm fine
total binding energy of ionic crystal at equilibrium is
All Reply
How does, ray of light coming form focus, behaves in concave mirror after refraction?
Bishesh Reply
Refraction does not occur in concave mirror. If refraction occurs then I don't know about this.
What is motion
Izevbogie Reply
Anything which changes itself with respect to time or surrounding
and what's time? is time everywhere same
how can u say that
do u know about black hole
Not so more
Radioactive substance
These substance create harmful radiation like alpha particle radiation, beta particle radiation, gamma particle radiation
But ask anything changes itself with respect to time or surrounding A Not any harmful radiation
explain cavendish experiment to determine the value of gravitational concept.
Celine Reply
 Cavendish Experiment to Measure Gravitational Constant. ... This experiment used a torsion balance device to attract lead balls together, measuring the torque on a wire and equating it to the gravitational force between the balls. Then by a complex derivation, the value of G was determined.
For the question about the scuba instructor's head above the pool, how did you arrive at this answer? What is the process?
Evan Reply
as a free falling object increases speed what is happening to the acceleration
Success Reply
of course g is constant
acceleration also inc
which paper will be subjective and which one objective
normal distributiin of errors report
normal distribution of errors
acceleration also increases
there are two correct answers depending on whether air resistance is considered. none of those answers have acceleration increasing.
Acceleration is the change in velocity over time, hence it's the derivative of the velocity with respect to time. So this case would depend on the velocity. More specifically the change in velocity in the system.
photo electrons doesn't emmit when electrons are free to move on surface of metal why?
Rafi Reply
What would be the minimum work function of a metal have to be for visible light(400-700)nm to ejected photoelectrons?
Mohammed Reply
give any fix value to wave length
40 cm into change mm
Arhaan Reply
40cm=40.0×10^-2m =400.0×10^-3m =400mm. that cap(^) I have used above is to the power.
i.e. 10to the power -2 in the first line and 10 to the power -3 in the the second line.
there is mistake in my first msg correction is 40cm=40.0×10^-2m =400.0×10^-3m =400mm. sorry for the mistake friends.
40cm=40.0×10^-2m =400.0×10^-3m =400mm.
this msg is out of mistake. sorry friends​.
what is physics?
sisay Reply
why we have physics
Anil Reply
because is the study of mater and natural world
because physics is nature. it explains the laws of nature. some laws already discovered. some laws yet to be discovered.
physics is the study of non living things if we added it with biology it becomes biophysics and bio is the study of living things tell me please what is this?
physics is the study of matter,energy and their interactions
all living things are matter
why rolling friction is less than sliding friction
thanks buvanas

Get the best University physics vol... course in your pocket!

Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?