<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the role Schrӧdinger’s equation plays in quantum mechanics
  • Explain the difference between time-dependent and -independent Schrӧdinger’s equations
  • Interpret the solutions of Schrӧdinger’s equation

In the preceding two sections, we described how to use a quantum mechanical wave function and discussed Heisenberg’s uncertainty principle. In this section, we present a complete and formal theory of quantum mechanics that can be used to make predictions. In developing this theory, it is helpful to review the wave theory of light. For a light wave, the electric field E ( x , t ) obeys the relation

2 E x 2 = 1 c 2 2 E t 2 ,

where c is the speed of light and the symbol represents a partial derivative . (Recall from Oscillations that a partial derivative is closely related to an ordinary derivative, but involves functions of more than one variable. When taking the partial derivative of a function by a certain variable, all other variables are held constant.) A light wave consists of a very large number of photons, so the quantity | E ( x , t ) | 2 can interpreted as a probability density of finding a single photon at a particular point in space (for example, on a viewing screen).

There are many solutions to this equation. One solution of particular importance is

E ( x , t ) = A sin ( k x ω t ) ,

where A is the amplitude of the electric field, k is the wave number, and ω is the angular frequency. Combing this equation with [link] gives

k 2 = ω 2 c 2 .

According to de Broglie’s equations, we have p = k and E = ω . Substituting these equations in [link] gives

p = E c ,

or

E = p c .

Therefore, according to Einstein’s general energy-momentum equation ( [link] ), [link] describes a particle with a zero rest mass. This is consistent with our knowledge of a photon.

This process can be reversed. We can begin with the energy-momentum equation of a particle and then ask what wave equation corresponds to it. The energy-momentum equation of a nonrelativistic particle in one dimension is

E = p 2 2 m + U ( x , t ) ,

where p is the momentum, m is the mass, and U is the potential energy of the particle. The wave equation that goes with it turns out to be a key equation in quantum mechanics, called Schrӧdinger’s time-dependent equation    .

The schrӧdinger time-dependent equation

The equation describing the energy and momentum of a wave function is known as the Schrӧdinger equation:

2 2 m 2 Ψ ( x , t ) x 2 + U ( x , t ) Ψ ( x , t ) = i Ψ ( x , t ) t .

As described in Potential Energy and Conservation of Energy , the force on the particle described by this equation is given by

F = U ( x , t ) x .

This equation plays a role in quantum mechanics similar to Newton’s second law in classical mechanics. Once the potential energy of a particle is specified—or, equivalently, once the force on the particle is specified—we can solve this differential equation for the wave function. The solution to Newton’s second law equation (also a differential equation) in one dimension is a function x ( t ) that specifies where an object is at any time t . The solution to Schrӧdinger’s time-dependent equation provides a tool—the wave function—that can be used to determine where the particle is likely to be. This equation can be also written in two or three dimensions. Solving Schrӧdinger’s time-dependent equation often requires the aid of a computer.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask