# 6.5 De broglie’s matter waves  (Page 3/10)

 Page 3 / 10

## The electron wave in the ground state of hydrogen

Find the de Broglie wavelength of an electron in the ground state of hydrogen.

## Strategy

We combine the first quantization condition in [link] with [link] and use [link] for the first Bohr radius with $n=1.$

## Solution

When $n=1$ and ${r}_{n}={a}_{0}=0.529\phantom{\rule{0.2em}{0ex}}\text{Å,}$ the Bohr quantization condition gives ${a}_{0}p=1·\hslash ⇒p=\hslash \phantom{\rule{0.1em}{0ex}}\text{/}\phantom{\rule{0.1em}{0ex}}{a}_{0}.$ The electron wavelength is:

$\lambda =h\phantom{\rule{0.1em}{0ex}}\text{/}\phantom{\rule{0.1em}{0ex}}p=h\phantom{\rule{0.1em}{0ex}}\text{/}\phantom{\rule{0.1em}{0ex}}\hslash \phantom{\rule{0.1em}{0ex}}\text{/}\phantom{\rule{0.1em}{0ex}}{a}_{0}=2\pi {a}_{0}=2\pi \left(0.529\phantom{\rule{0.2em}{0ex}}\text{Å}\right)=3.324\phantom{\rule{0.2em}{0ex}}\text{Å}.$

## Significance

We obtain the same result when we use [link] directly.

Check Your Understanding Find the de Broglie wavelength of an electron in the third excited state of hydrogen.

$\lambda =2\pi n{a}_{0}=2\text{(}3.324\phantom{\rule{0.2em}{0ex}}\text{Å}\text{)}=6.648\phantom{\rule{0.2em}{0ex}}\text{Å}$

Experimental confirmation of matter waves came in 1927 when C. Davisson and L. Germer performed a series of electron-scattering experiments that clearly showed that electrons do behave like waves. Davisson and Germer did not set up their experiment to confirm de Broglie’s hypothesis: The confirmation came as a byproduct of their routine experimental studies of metal surfaces under electron bombardment.

In the particular experiment that provided the very first evidence of electron waves (known today as the Davisson–Germer experiment    ), they studied a surface of nickel. Their nickel sample was specially prepared in a high-temperature oven to change its usual polycrystalline structure to a form in which large single-crystal domains occupy the volume. [link] shows the experimental setup. Thermal electrons are released from a heated element (usually made of tungsten) in the electron gun and accelerated through a potential difference $\text{Δ}V,$ becoming a well-collimated beam of electrons produced by an electron gun. The kinetic energy K of the electrons is adjusted by selecting a value of the potential difference in the electron gun. This produces a beam of electrons with a set value of linear momentum, in accordance with the conservation of energy:

$e\text{Δ}V=K=\frac{{p}^{2}}{2m}⇒p=\sqrt{2me\text{Δ}V}.$

The electron beam is incident on the nickel sample in the direction normal to its surface. At the surface, it scatters in various directions. The intensity of the beam scattered in a selected direction $\phi$ is measured by a highly sensitive detector. The detector’s angular position with respect to the direction of the incident beam can be varied from $\phi =0\text{°}$ to $\phi =90\text{°}.$ The entire setup is enclosed in a vacuum chamber to prevent electron collisions with air molecules, as such thermal collisions would change the electrons’ kinetic energy and are not desirable.

When the nickel target has a polycrystalline form with many randomly oriented microscopic crystals, the incident electrons scatter off its surface in various random directions. As a result, the intensity of the scattered electron beam is much the same in any direction, resembling a diffuse reflection of light from a porous surface. However, when the nickel target has a regular crystalline structure, the intensity of the scattered electron beam shows a clear maximum at a specific angle and the results show a clear diffraction pattern (see [link] ). Similar diffraction patterns formed by X-rays scattered by various crystalline solids were studied in 1912 by father-and-son physicists William H. Bragg and William L. Bragg . The Bragg law in X-ray crystallography provides a connection between the wavelength $\lambda$ of the radiation incident on a crystalline lattice, the lattice spacing, and the position of the interference maximum in the diffracted radiation (see Diffraction ).

how does colour appear in thin films
in the wave equation y=Asin(kx-wt+¢) what does k and w stand for.
derivation of lateral shieft
Hi
Hi
hi
ALFRED
how are you?
hi
asif
hi
Imran
I'm fine
ALFRED
total binding energy of ionic crystal at equilibrium is
How does, ray of light coming form focus, behaves in concave mirror after refraction?
Sushant
What is motion
Anything which changes itself with respect to time or surrounding
Sushant
good
Chemist
and what's time? is time everywhere same
Chemist
No
Sushant
how can u say that
Chemist
do u know about black hole
Chemist
Not so more
Sushant
DHEERAJ
Sushant
But ask anything changes itself with respect to time or surrounding A Not any harmful radiation
DHEERAJ
explain cavendish experiment to determine the value of gravitational concept.
For the question about the scuba instructor's head above the pool, how did you arrive at this answer? What is the process?
as a free falling object increases speed what is happening to the acceleration
of course g is constant
Alwielland
acceleration also inc
Usman
which paper will be subjective and which one objective
jay
normal distributiin of errors report
Dennis
normal distribution of errors
Dennis
photo electrons doesn't emmit when electrons are free to move on surface of metal why?
What would be the minimum work function of a metal have to be for visible light(400-700)nm to ejected photoelectrons?
give any fix value to wave length
Rafi
40 cm into change mm
40cm=40.0×10^-2m =400.0×10^-3m =400mm. that cap(^) I have used above is to the power.
Prema
i.e. 10to the power -2 in the first line and 10 to the power -3 in the the second line.
Prema
there is mistake in my first msg correction is 40cm=40.0×10^-2m =400.0×10^-3m =400mm. sorry for the mistake friends.
Prema
40cm=40.0×10^-2m =400.0×10^-3m =400mm.
Prema
this msg is out of mistake. sorry friends​.
Prema
what is physics?
why we have physics
because is the study of mater and natural world
John
because physics is nature. it explains the laws of nature. some laws already discovered. some laws yet to be discovered.
Yoblaze
physics is the study of non living things if we added it with biology it becomes biophysics and bio is the study of living things tell me please what is this?
tahreem
physics is the study of matter,energy and their interactions
Buvanes
all living things are matter
Buvanes
why rolling friction is less than sliding friction
tahreem
thanks buvanas
tahreem
is this a physics forum