# 6.5 De broglie’s matter waves  (Page 2/10)

 Page 2 / 10
$\lambda =\frac{h}{p}=\frac{hc}{\sqrt{K\left(K+2{E}_{0}\right)}}.$

Depending on the problem at hand, in this equation we can use the following values for hc : $hc=\left(6.626\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-34}\text{J}·\text{s}\right)\left(2.998\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{8}\text{m/s}\right)=1.986\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-25}\text{J}·\text{m}=1.241\phantom{\rule{0.2em}{0ex}}\text{eV}·\mu \text{m}$

## Solution

1. For the basketball, the kinetic energy is
$K={m}_{0}{u}^{2}\phantom{\rule{0.1em}{0ex}}\text{/}\phantom{\rule{0.1em}{0ex}}2=\left(0.65\text{kg}\right){\left(10\text{m/s}\right)}^{2}\phantom{\rule{0.1em}{0ex}}\text{/}\phantom{\rule{0.1em}{0ex}}2=32.5\text{J}$

and the rest mass energy is
${E}_{0}={m}_{0}{c}^{2}=\left(0.65\text{kg}\right){\left(2.998\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{8}\text{m/s}\right)}^{2}=5.84\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{16}\text{J.}$

We see that $K\phantom{\rule{0.1em}{0ex}}\text{/}\phantom{\rule{0.1em}{0ex}}\left(K+{E}_{0}\right)\ll 1\phantom{\rule{0.2em}{0ex}}\text{and use}\phantom{\rule{0.2em}{0ex}}p={m}_{0}u=\left(0.65\text{kg}\right)\left(10\text{m/s}\right)=6.5\phantom{\rule{0.2em}{0ex}}\text{J}·\text{s/m}:$
$\lambda =\frac{h}{p}=\frac{6.626\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-34}\text{J}·\text{s}}{6.5\text{J}·\text{s/m}}=1.02\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-34}\text{m}.$
2. For the nonrelativistic electron,
${E}_{0}={m}_{0}{c}^{2}=\left(9.109\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-31}\text{kg}\right){\left(2.998\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{8}\text{m/s}\right)}^{2}=511\phantom{\rule{0.2em}{0ex}}\text{keV}$

and when $K=1.0\phantom{\rule{0.2em}{0ex}}\text{eV},$ we have $K\phantom{\rule{0.1em}{0ex}}\text{/}\phantom{\rule{0.1em}{0ex}}\left(K+{E}_{0}\right)=\left(1\phantom{\rule{0.1em}{0ex}}\text{/}\phantom{\rule{0.1em}{0ex}}512\right)\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-3}\ll 1,$ so we can use the nonrelativistic formula. However, it is simpler here to use [link] :
$\lambda =\frac{h}{p}=\frac{hc}{\sqrt{K\left(K+2{E}_{0}\right)}}=\frac{1.241\phantom{\rule{0.2em}{0ex}}\text{eV}·\mu \text{m}}{\sqrt{\left(1.0\phantom{\rule{0.2em}{0ex}}\text{eV}\right)\left[1.0\phantom{\rule{0.2em}{0ex}}\text{eV+}2\left(511\phantom{\rule{0.2em}{0ex}}\text{keV}\right)\right]}}=1.23\phantom{\rule{0.2em}{0ex}}\text{nm}.$

If we use nonrelativistic momentum, we obtain the same result because 1 eV is much smaller than the rest mass of the electron.
3. For a fast electron with $K=108\phantom{\rule{0.2em}{0ex}}\text{keV,}$ relativistic effects cannot be neglected because its total energy is $E=K+{E}_{0}=108\phantom{\rule{0.2em}{0ex}}\text{keV}+511\phantom{\rule{0.2em}{0ex}}\text{keV}=619\phantom{\rule{0.2em}{0ex}}\text{keV}$ and $K\phantom{\rule{0.1em}{0ex}}\text{/}\phantom{\rule{0.1em}{0ex}}E=108\phantom{\rule{0.1em}{0ex}}\text{/}\phantom{\rule{0.1em}{0ex}}619$ is not negligible:
$\lambda =\frac{h}{p}=\frac{hc}{\sqrt{K\left(K+2{E}_{0}\right)}}=\frac{1.241\phantom{\rule{0.2em}{0ex}}\text{eV}·\text{μm}}{\sqrt{108\phantom{\rule{0.2em}{0ex}}\text{keV}\left[108\phantom{\rule{0.2em}{0ex}}\text{keV}+2\left(511\phantom{\rule{0.2em}{0ex}}\text{keV}\right)\right]}}=3.55\phantom{\rule{0.2em}{0ex}}\text{pm}.$

## Significance

We see from these estimates that De Broglie’s wavelengths of macroscopic objects such as a ball are immeasurably small. Therefore, even if they exist, they are not detectable and do not affect the motion of macroscopic objects.

Check Your Understanding What is de Broglie’s wavelength of a nonrelativistic proton with a kinetic energy of 1.0 eV?

1.7 pm

Using the concept of the electron matter wave, de Broglie provided a rationale for the quantization of the electron’s angular momentum in the hydrogen atom, which was postulated in Bohr’s quantum theory. The physical explanation for the first Bohr quantization condition comes naturally when we assume that an electron in a hydrogen atom behaves not like a particle but like a wave. To see it clearly, imagine a stretched guitar string that is clamped at both ends and vibrates in one of its normal modes. If the length of the string is l ( [link] ), the wavelengths of these vibrations cannot be arbitrary but must be such that an integer k number of half-wavelengths $\lambda \phantom{\rule{0.1em}{0ex}}\text{/}\phantom{\rule{0.1em}{0ex}}2$ fit exactly on the distance l between the ends. This is the condition $l=k\lambda \phantom{\rule{0.1em}{0ex}}\text{/}\phantom{\rule{0.1em}{0ex}}2$ for a standing wave on a string. Now suppose that instead of having the string clamped at the walls, we bend its length into a circle and fasten its ends to each other. This produces a circular string that vibrates in normal modes, satisfying the same standing-wave condition, but the number of half-wavelengths must now be an even number $k,\phantom{\rule{0.2em}{0ex}}k=2n,$ and the length l is now connected to the radius ${r}_{n}$ of the circle. This means that the radii are not arbitrary but must satisfy the following standing-wave condition:

$2\pi {r}_{n}=2n\frac{\lambda }{2}.$

If an electron in the n th Bohr orbit moves as a wave, by [link] its wavelength must be equal to $\lambda =2\pi {r}_{n}\phantom{\rule{0.1em}{0ex}}\text{/}\phantom{\rule{0.1em}{0ex}}n.$ Assuming that [link] is valid, the electron wave of this wavelength corresponds to the electron’s linear momentum, $p=h\phantom{\rule{0.1em}{0ex}}\text{/}\phantom{\rule{0.1em}{0ex}}\lambda =nh\phantom{\rule{0.1em}{0ex}}\text{/}\phantom{\rule{0.1em}{0ex}}\left(2\pi {r}_{n}\right)=n\hslash \phantom{\rule{0.1em}{0ex}}\text{/}\phantom{\rule{0.1em}{0ex}}{r}_{n}.$ In a circular orbit, therefore, the electron’s angular momentum must be

${L}_{n}={r}_{n}p={r}_{n}\frac{n\hslash }{{r}_{n}}=n\hslash .$

This equation is the first of Bohr’s quantization conditions, given by [link] . Providing a physical explanation for Bohr’s quantization condition is a convincing theoretical argument for the existence of matter waves.

what is an atom
All matter is composed of two sets of three dimensions. The first set (1,2,3) decay with a positive charge. The second set (4,5,6) decay with a negative charge. As they decay, they create space (7 8,9) dimensions.
John
Two sets of (1,2,3,4,5,6) dimensions create a proton, a neutron, and an electron. This is the primordial atom.
John
A 10kg mass lift to a height of 24m and release. what is the total energy of the system
mechanics is that branch of physical and mathatics that
E=Mgh=10*10*24=2400J
what is the difference between a molecule and atom
Atoms are single neutral particles. Molecules are neutral particles made of two or more atoms bonded together.
Manfred
what I'd dynamic propulsion
A body quadruples its momentum when its speed doubles.What was the initial speed in units of c.i.e..what was u/c ?
what is enthalpy?
a thermodynamic quantity equivalent to the total heat content of a system
RAMLA
proparty of tharmo dainamic
bloch
What is the meaning of Nuclear Fission?
what do you mean by dynamics single particles
عند قذف جسم إلى أعلى بسرعة إبتدائية فإنه سيصل إلى ارتفاع معين (أقصى ارتفاع) ثم يعود هابطاً نحو سطح الأرض .   إذا قُذِفَ جسم إلى أعلى ووجد أن سرعته 18 م / ث عندما قطع 1/4 المسافة التي تمثل أقصى ارتفاع سيصله فالمطلوب إيجاد السرعة التي قُذِف بها بالمتر / ث . إن هذه السرعة هي واحدة من الإجابات التالية
what is light
light is a kind of radiation That stimulates sight brightness a source of illumination.
kenneth
Electromagnet radiation creates space 7th, 8th, and 9th dimensions at the rate of c.
John
That is the reason that the speed of light is constant.
John
This creation of new space is "Dark Energy".
John
The first two sets of three dimensions, 1 through 6, are "Dark Matter".
John
As matter decays into luminous matter, a proton, a neutron, and an electron creat deuterium.
John
There are three sets of three protons, 9.
John
There are three sets of three neutrons, 9.
John
A free neutron decays into a proton, an electron, and a neutrino.
John
There are three sets of five neutrinoes, 15.
John
Neutrinoes are two dimensional.
John
A positron is composed of the first three dimensions.
John
An electron is composed of the second three dimensions.
John
What is photoelectric
light energy (photons) through semiconduction of N-P junction into electrical via excitation of silicon purified and cristalized into wafers with partially contaminated silicon to allow this N-P function to operate.
Michael
i.e. Solar pannel.
Michael
Photoelectric emission is the emission of electrons on a metal surface due to incident rays reflected on it
Benita
If you lie on a beach looking at the water with your head tipped slightly sideways, your polarized sunglasses do not work very well.Why not?
it has everything to do with the angle the UV sunlight strikes your sunglasses.
Jallal
this is known as optical physics. it describes how visible light, ultraviolet light and infrared light interact when they come into contact with physical matter. usually the photons or light upon interaction result in either reflection refraction diffraction or interference of the light.
Jallal
I hope I'm clear if I'm not please tell me to clarify further or rephrase
Jallal
what is bohrs model for hydrogen atom
hi
Tr
Hello
Youte
Hi
Nwangwu-ike
hi
Siddiquee
hi
Omar
helo
Mcjoi
what is the value of speed of light
1.79×10_¹⁹ km per hour
Swagatika
3×10^8
Benita
what r dwarf planet