<< Chapter < Page Chapter >> Page >

The lorentz transformation equations

The Galilean transformation nevertheless violates Einstein’s postulates, because the velocity equations state that a pulse of light moving with speed c along the x -axis would travel at speed c v in the other inertial frame. Specifically, the spherical pulse has radius r = c t at time t in the unprimed frame, and also has radius r = c t at time t in the primed frame. Expressing these relations in Cartesian coordinates gives

x 2 + y 2 + z 2 c 2 t 2 = 0 x 2 + y 2 + z 2 c 2 t 2 = 0 .

The left-hand sides of the two expressions can be set equal because both are zero. Because y = y and z = z , we obtain

x 2 c 2 t 2 = x 2 c 2 t 2 .

This cannot be satisfied for nonzero relative velocity v of the two frames if we assume the Galilean transformation results in t = t with x = x + v t .

To find the correct set of transformation equations, assume the two coordinate systems S and S in [link] . First suppose that an event occurs at ( x , 0 , 0 , t ) in S and at ( x , 0 , 0 , t ) in S , as depicted in the figure.

The axes of frames S and S prime are shown. S has axes x, y, and z. S prime is moving to the right with velocity v and has axes x prime, y prime and z prime. S and S prime are aligned along the horizontal x and x prime axes and are separated by a distance v t. An event on the horizontal x and x prime axes is indicated by a point which is a distance x from the y z plane of the S frame and a distance x prime from the y prime, z prime plane of the S prime frame.
An event occurs at ( x , 0, 0, t ) in S and at ( x , 0 , 0 , t ) in S . The Lorentz transformation equations relate events in the two systems.

Suppose that at the instant that the origins of the coordinate systems in S and S coincide, a flash bulb emits a spherically spreading pulse of light starting from the origin. At time t , an observer in S finds the origin of S to be at x = v t . With the help of a friend in S , the S observer also measures the distance from the event to the origin of S and finds it to be x 1 v 2 / c 2 . This follows because we have already shown the postulates of relativity to imply length contraction. Thus the position of the event in S is

x = v t + x 1 v 2 / c 2

and

x = x v t 1 v 2 / c 2 .

The postulates of relativity imply that the equation relating distance and time of the spherical wave front:

x 2 + y 2 + z 2 c 2 t 2 = 0

must apply both in terms of primed and unprimed coordinates, which was shown above to lead to [link] :

x 2 c 2 t 2 = x 2 c 2 t 2 .

We combine this with the equation relating x and x to obtain the relation between t and t :

t = t v x / c 2 1 v 2 / c 2 .

The equations relating the time and position of the events as seen in S are then

t = t + v x / c 2 1 v 2 / c 2 x = x + v t 1 v 2 / c 2 y = y z = z .

This set of equations, relating the position and time in the two inertial frames, is known as the Lorentz transformation    . They are named in honor of H.A. Lorentz (1853–1928), who first proposed them. Interestingly, he justified the transformation on what was eventually discovered to be a fallacious hypothesis. The correct theoretical basis is Einstein’s special theory of relativity.

The reverse transformation expresses the variables in S in terms of those in S . Simply interchanging the primed and unprimed variables and substituting gives:

t = t v x / c 2 1 v 2 / c 2 x = x v t 1 v 2 / c 2 y = y z = z .

Using the lorentz transformation for time

Spacecraft S is on its way to Alpha Centauri when Spacecraft S passes it at relative speed c /2. The captain of S sends a radio signal that lasts 1.2 s according to that ship’s clock. Use the Lorentz transformation to find the time interval of the signal measured by the communications officer of spaceship S .

Solution

  1. Identify the known: Δ t = t 2 t 1 = 1.2 s ; Δ x = x 2 x 1 = 0 .
  2. Identify the unknown: Δ t = t 2 t 1 .
  3. Express the answer as an equation. The time signal starts as ( x , t 1 ) and stops at ( x , t 2 ) . Note that the x coordinate of both events is the same because the clock is at rest in S . Write the first Lorentz transformation equation in terms of Δ t = t 2 t 1 , Δ x = x 2 x 1 , and similarly for the primed coordinates, as:
    Δ t = Δ t + v Δ x / c 2 1 v 2 c 2 .

    Because the position of the clock in S is fixed, Δ x = 0 , and the time interval Δ t becomes:
    Δ t = Δ t 1 v 2 c 2 .
  4. Do the calculation.
    With Δ t = 1.2 s this gives:
    Δ t = 1.2 s 1 ( 1 2 ) 2 = 1.6 s.

    Note that the Lorentz transformation reproduces the time dilation equation.
Got questions? Get instant answers now!

Questions & Answers

what is phylogeny
Odigie Reply
evolutionary history and relationship of an organism or group of organisms
AI-Robot
ok
Deng
what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask