<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Show from Einstein's postulates that two events measured as simultaneous in one inertial frame are not necessarily simultaneous in all inertial frames.
  • Describe how simultaneity is a relative concept for observers in different inertial frames in relative motion.

Do time intervals depend on who observes them? Intuitively, it seems that the time for a process, such as the elapsed time for a foot race ( [link] ), should be the same for all observers. In everyday experiences, disagreements over elapsed time have to do with the accuracy of measuring time. No one would be likely to argue that the actual time interval was different for the moving runner and for the stationary clock displayed. Carefully considering just how time is measured, however, shows that elapsed time does depends on the relative motion of an observer with respect to the process being measured.

A photo of the finish of a foot race with the time �43:06� shown for the racer crossing the finish line.
Elapsed time for a foot race is the same for all observers, but at relativistic speeds, elapsed time depends on the motion of the observer relative to the location where the process being timed occurs. (credit: "Jason Edward Scott Bain"/Flickr)

Consider how we measure elapsed time. If we use a stopwatch, for example, how do we know when to start and stop the watch? One method is to use the arrival of light from the event. For example, if you’re in a moving car and observe the light arriving from a traffic signal change from green to red, you know it’s time to step on the brake pedal. The timing is more accurate if some sort of electronic detection is used, avoiding human reaction times and other complications.

Now suppose two observers use this method to measure the time interval between two flashes of light from flash lamps that are a distance apart ( [link] ). An observer A is seated midway on a rail car with two flash lamps at opposite sides equidistant from her. A pulse of light is emitted from each flash lamp and moves toward observer A , shown in frame (a) of the figure. The rail car is moving rapidly in the direction indicated by the velocity vector in the diagram. An observer B standing on the platform is facing the rail car as it passes and observes both flashes of light reach him simultaneously, as shown in frame (c). He measures the distances from where he saw the pulses originate, finds them equal, and concludes that the pulses were emitted simultaneously.

However, because of Observer A ’s motion, the pulse from the right of the railcar, from the direction the car is moving, reaches her before the pulse from the left, as shown in frame (b). She also measures the distances from within her frame of reference, finds them equal, and concludes that the pulses were not emitted simultaneously.

The two observers reach conflicting conclusions about whether the two events at well-separated locations were simultaneous. Both frames of reference are valid, and both conclusions are valid. Whether two events at separate locations are simultaneous depends on the motion of the observer relative to the locations of the events.

This illustration shows a train car moving to the right with observer A in the center of the car and flash lamps at either end. Observer B is standing stationary on the ground outside. In figure a, observer A is directly in front of observer B and the flash lamp signals are at either end of the train car. In figure b, the train has moved to the right so that observer A is to the right of observer B. The left end of the car is still to the left of observer B. The signal from the flash lamp at the left end of the car is between the flash lamp and observer B. The signal from the flash lamp on the right end of the car is at observer A’s position. In figure c, the car, with observer A, has moved further to the right. The left end of the car is still to the left of observer B. Both flash lamp signals are at the location of observer B.
(a) Two pulses of light are emitted simultaneously relative to observer B . (c) The pulses reach observer B ’s position simultaneously. (b) Because of A ’s motion, she sees the pulse from the right first and concludes the bulbs did not flash simultaneously. Both conclusions are correct.

Here, the relative velocity between observers affects whether two events a distance apart are observed to be simultaneous. Simultaneity is not absolute . We might have guessed (incorrectly) that if light is emitted simultaneously, then two observers halfway between the sources would see the flashes simultaneously. But careful analysis shows this cannot be the case if the speed of light is the same in all inertial frames.

This type of thought experiment (in German, “Gedankenexperiment”) shows that seemingly obvious conclusions must be changed to agree with the postulates of relativity. The validity of thought experiments can only be determined by actual observation, and careful experiments have repeatedly confirmed Einstein’s theory of relativity.


  • Two events are defined to be simultaneous if an observer measures them as occurring at the same time (such as by receiving light from the events).
  • Two events at locations a distance apart that are simultaneous for an observer at rest in one frame of reference are not necessarily simultaneous for an observer at rest in a different frame of reference.

Questions & Answers

what is the difference between a molecule and atom
Natanim Reply
Atoms are single neutral particles. Molecules are neutral particles made of two or more atoms bonded together.
what I'd dynamic propulsion
Elias Reply
A body quadruples its momentum when its speed doubles.What was the initial speed in units of c.i.e..what was u/c ?
Lekshmi Reply
what is enthalpy?
prabir Reply
a thermodynamic quantity equivalent to the total heat content of a system
proparty of tharmo dainamic
What is the meaning of Nuclear Fission?
Benita Reply
what do you mean by dynamics single particles
Peacekamei Reply
عند قذف جسم إلى أعلى بسرعة إبتدائية فإنه سيصل إلى ارتفاع معين (أقصى ارتفاع) ثم يعود هابطاً نحو سطح الأرض .   إذا قُذِفَ جسم إلى أعلى ووجد أن سرعته 18 م / ث عندما قطع 1/4 المسافة التي تمثل أقصى ارتفاع سيصله فالمطلوب إيجاد السرعة التي قُذِف بها بالمتر / ث . إن هذه السرعة هي واحدة من الإجابات التالية
Aml Reply
what is light
Ayebanifesunday Reply
light is a kind of radiation That stimulates sight brightness a source of illumination.
Electromagnet radiation creates space 7th, 8th, and 9th dimensions at the rate of c.
That is the reason that the speed of light is constant.
This creation of new space is "Dark Energy".
The first two sets of three dimensions, 1 through 6, are "Dark Matter".
As matter decays into luminous matter, a proton, a neutron, and an electron creat deuterium.
There are three sets of three protons, 9.
There are three sets of three neutrons, 9.
A free neutron decays into a proton, an electron, and a neutrino.
There are three sets of five neutrinoes, 15.
Neutrinoes are two dimensional.
A positron is composed of the first three dimensions.
An electron is composed of the second three dimensions.
What is photoelectric
Hsssan Reply
light energy (photons) through semiconduction of N-P junction into electrical via excitation of silicon purified and cristalized into wafers with partially contaminated silicon to allow this N-P function to operate.
i.e. Solar pannel.
Photoelectric emission is the emission of electrons on a metal surface due to incident rays reflected on it
If you lie on a beach looking at the water with your head tipped slightly sideways, your polarized sunglasses do not work very well.Why not?
Rakhi Reply
it has everything to do with the angle the UV sunlight strikes your sunglasses.
this is known as optical physics. it describes how visible light, ultraviolet light and infrared light interact when they come into contact with physical matter. usually the photons or light upon interaction result in either reflection refraction diffraction or interference of the light.
I hope I'm clear if I'm not please tell me to clarify further or rephrase
what is bohrs model for hydrogen atom
Swagatika Reply
what is the value of speed of light
Propessor Reply
1.79×10_¹⁹ km per hour
what r dwarf planet
Sivalakshmi Reply
what is energy
Isiguzo Reply
কাজের একক কী
কাজের একক কী
Energy is ability so capacity to do work.
friction ka direction Kaise pata karte hai
Rahul Reply
friction is always in the opposite of the direction of moving object

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now

Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?