<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the phase changes that occur upon reflection
  • Describe fringes established by reflected rays of a common source
  • Explain the appearance of colors in thin films

The bright colors seen in an oil slick floating on water or in a sunlit soap bubble are caused by interference. The brightest colors are those that interfere constructively. This interference is between light reflected from different surfaces of a thin film; thus, the effect is known as thin-film interference    .

As we noted before, interference effects are most prominent when light interacts with something having a size similar to its wavelength. A thin film is one having a thickness t smaller than a few times the wavelength of light, λ . Since color is associated indirectly with λ and because all interference depends in some way on the ratio of λ to the size of the object involved, we should expect to see different colors for different thicknesses of a film, as in [link] .

A picture of soap bubbles is shown.
These soap bubbles exhibit brilliant colors when exposed to sunlight. (credit: Scott Robinson)

What causes thin-film interference? [link] shows how light reflected from the top and bottom surfaces of a film can interfere. Incident light is only partially reflected from the top surface of the film (ray 1). The remainder enters the film and is itself partially reflected from the bottom surface. Part of the light reflected from the bottom surface can emerge from the top of the film (ray 2) and interfere with light reflected from the top (ray 1). The ray that enters the film travels a greater distance, so it may be in or out of phase with the ray reflected from the top. However, consider for a moment, again, the bubbles in [link] . The bubbles are darkest where they are thinnest. Furthermore, if you observe a soap bubble carefully, you will note it gets dark at the point where it breaks. For very thin films, the difference in path lengths of rays 1 and 2 in [link] is negligible, so why should they interfere destructively and not constructively? The answer is that a phase change can occur upon reflection, as discussed next.

Picture is a schematic drawing of the light undergoing interference by a thin film with the thickness t. Light striking a thin film is partially reflected (ray 1) and partially refracted at the top surface. The refracted ray is partially reflected at the bottom surface and emerges as ray 2.
Light striking a thin film is partially reflected (ray 1) and partially refracted at the top surface. The refracted ray is partially reflected at the bottom surface and emerges as ray 2. These rays interfere in a way that depends on the thickness of the film and the indices of refraction of the various media.

Changes in phase due to reflection

We saw earlier ( Waves ) that reflection of mechanical waves can involve a 180 ° phase change. For example, a traveling wave on a string is inverted (i.e., a 180 ° phase change) upon reflection at a boundary to which a heavier string is tied. However, if the second string is lighter (or more precisely, of a lower linear density), no inversion occurs. Light waves produce the same effect, but the deciding parameter for light is the index of refraction. Light waves undergo a 180 ° or π radians phase change upon reflection at an interface beyond which is a medium of higher index of refraction. No phase change takes place when reflecting from a medium of lower refractive index ( [link] ). Because of the periodic nature of waves, this phase change or inversion is equivalent to ± λ / 2 in distance travelled, or path length. Both the path length and refractive indices are important factors in thin-film interference.

Questions & Answers

how does colour appear in thin films
Nwjwr Reply
in the wave equation y=Asin(kx-wt+¢) what does k and w stand for.
Kimani Reply
derivation of lateral shieft
James Reply
how are you?
I'm fine
total binding energy of ionic crystal at equilibrium is
All Reply
How does, ray of light coming form focus, behaves in concave mirror after refraction?
Bishesh Reply
Refraction does not occur in concave mirror. If refraction occurs then I don't know about this.
What is motion
Izevbogie Reply
Anything which changes itself with respect to time or surrounding
and what's time? is time everywhere same
how can u say that
do u know about black hole
Not so more
Radioactive substance
These substance create harmful radiation like alpha particle radiation, beta particle radiation, gamma particle radiation
But ask anything changes itself with respect to time or surrounding A Not any harmful radiation
explain cavendish experiment to determine the value of gravitational concept.
Celine Reply
For the question about the scuba instructor's head above the pool, how did you arrive at this answer? What is the process?
Evan Reply
as a free falling object increases speed what is happening to the acceleration
Success Reply
of course g is constant
acceleration also inc
which paper will be subjective and which one objective
normal distributiin of errors report
normal distribution of errors
acceleration also increases
there are two correct answers depending on whether air resistance is considered. none of those answers have acceleration increasing.
Acceleration is the change in velocity over time, hence it's the derivative of the velocity with respect to time. So this case would depend on the velocity. More specifically the change in velocity in the system.
photo electrons doesn't emmit when electrons are free to move on surface of metal why?
Rafi Reply
What would be the minimum work function of a metal have to be for visible light(400-700)nm to ejected photoelectrons?
Mohammed Reply
give any fix value to wave length
40 cm into change mm
Arhaan Reply
40cm=40.0×10^-2m =400.0×10^-3m =400mm. that cap(^) I have used above is to the power.
i.e. 10to the power -2 in the first line and 10 to the power -3 in the the second line.
there is mistake in my first msg correction is 40cm=40.0×10^-2m =400.0×10^-3m =400mm. sorry for the mistake friends.
40cm=40.0×10^-2m =400.0×10^-3m =400mm.
this msg is out of mistake. sorry friends​.
what is physics?
sisay Reply
why we have physics
Anil Reply
because is the study of mater and natural world
because physics is nature. it explains the laws of nature. some laws already discovered. some laws yet to be discovered.
physics is the study of non living things if we added it with biology it becomes biophysics and bio is the study of living things tell me please what is this?
physics is the study of matter,energy and their interactions
all living things are matter
why rolling friction is less than sliding friction
thanks buvanas
is this a physics forum
Physics Reply
Practice Key Terms 2

Get the best University physics vol... course in your pocket!

Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?