<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the locations and intensities of secondary maxima for multiple-slit interference

Analyzing the interference of light passing through two slits lays out the theoretical framework of interference and gives us a historical insight into Thomas Young’s experiments. However, much of the modern-day application of slit interference uses not just two slits but many, approaching infinity for practical purposes. The key optical element is called a diffraction grating, an important tool in optical analysis, which we discuss in detail in Diffraction . Here, we start the analysis of multiple-slit interference by taking the results from our analysis of the double slit ( N = 2 ) and extending it to configurations with three, four, and much larger numbers of slits.

[link] shows the simplest case of multiple-slit interference, with three slits, or N = 3 . The spacing between slits is d , and the path length difference between adjacent slits is d sin θ , same as the case for the double slit. What is new is that the path length difference for the first and the third slits is 2 d sin θ . The condition for constructive interference is the same as for the double slit, that is

d sin θ = m λ .

When this condition is met, 2 d sin θ is automatically a multiple of λ , so all three rays combine constructively, and the bright fringes that occur here are called principal maxima . But what happens when the path length difference between adjacent slits is only λ / 2 ? We can think of the first and second rays as interfering destructively, but the third ray remains unaltered. Instead of obtaining a dark fringe, or a minimum, as we did for the double slit, we see a secondary maximum    with intensity lower than the principal maxima.

Picture shows interference with three slits separated by distance d. Rays 1, 2, and 3 travel through the slits at the angles Theta.
Interference with three slits. Different pairs of emerging rays can combine constructively or destructively at the same time, leading to secondary maxima.

In general, for N slits, these secondary maxima occur whenever an unpaired ray is present that does not go away due to destructive interference. This occurs at ( N 2 ) evenly spaced positions between the principal maxima. The amplitude of the electromagnetic wave is correspondingly diminished to 1 / N of the wave at the principal maxima, and the light intensity, being proportional to the square of the wave amplitude, is diminished to 1 / N 2 of the intensity compared to the principal maxima. As [link] shows, a dark fringe is located between every maximum (principal or secondary). As N grows larger and the number of bright and dark fringes increase, the widths of the maxima become narrower due to the closely located neighboring dark fringes. Because the total amount of light energy remains unaltered, narrower maxima require that each maximum reaches a correspondingly higher intensity.

Picture A shows a graph for the interference fringe patterns for two, three and four slits. As the number of slits increases, more secondary maxima appear, but the principal maxima become narrower. Picture B shows photographs of fringe patterns for two, three and four slits. As the number of slits increases, more secondary maxima appear, but the principal maxima become brighter.
Interference fringe patterns for two, three and four slits. As the number of slits increases, more secondary maxima appear, but the principal maxima become brighter and narrower. (a) Graph and (b) photographs of fringe patterns.

Summary

  • Interference from multiple slits ( N > 2 ) produces principal as well as secondary maxima.
  • As the number of slits is increased, the intensity of the principal maxima increases and the width decreases.

Problems

Ten narrow slits are equally spaced 0.25 mm apart and illuminated with yellow light of wavelength 580 nm. (a) What are the angular positions of the third and fourth principal maxima? (b) What is the separation of these maxima on a screen 2.0 m from the slits?

a. 0.40 ° , 0.53 ° ; b. 4.6 × 10 −3 m

Got questions? Get instant answers now!

The width of bright fringes can be calculated as the separation between the two adjacent dark fringes on either side. Find the angular widths of the third- and fourth-order bright fringes from the preceding problem.

Got questions? Get instant answers now!

For a three-slit interference pattern, find the ratio of the peak intensities of a secondary maximum to a principal maximum.

1:9

Got questions? Get instant answers now!

What is the angular width of the central fringe of the interference pattern of (a) 20 slits separated by d = 2.0 × 10 −3 mm ? (b) 50 slits with the same separation? Assume that λ = 600 nm .

Got questions? Get instant answers now!

Questions & Answers

what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
what is chemistry
Imoh Reply
what is chemistry
Damilola
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask