<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Determine the angles for bright and dark fringes for double slit interference
  • Calculate the positions of bright fringes on a screen

[link] (a) shows how to determine the path length difference Δ l for waves traveling from two slits to a common point on a screen. If the screen is a large distance away compared with the distance between the slits, then the angle θ between the path and a line from the slits to the screen [part (b)] is nearly the same for each path. In other words, r 1 and r 2 are essentially parallel. The lengths of r 1 and r 2 differ by Δ l , as indicated by the two dashed lines in the figure. Simple trigonometry shows

Δ l = d sin θ

where d is the distance between the slits. Combining this result with [link] , we obtain constructive interference for a double slit when the path length difference is an integral multiple of the wavelength, or

d sin θ = m λ , for m = 0 , ± 1 , ± 2 , ± 3 ,… (constructive interference) .

Similarly, to obtain destructive interference for a double slit, the path length difference must be a half-integral multiple of the wavelength, or

d sin θ = ( m + 1 2 ) λ , for m = 0 , ± 1 , ± 2 , ± 3 ,… (destructive interference)

where λ is the wavelength of the light, d is the distance between slits, and θ is the angle from the original direction of the beam as discussed above. We call m the order    of the interference. For example, m = 4 is fourth-order interference.

Left picture is a schematic drawing that shows waves r1 and r2 passing through the two slits S1 and S2. The waves meet in a common point P on a screen. Distance between points S1 and S2 is d; distance between the screen with the two slits and the screen with point P is x. Point P is higher than the mid-point between S1 and S2 by the distance y. Imaginary line drawn from the point P to the mid-point between slits form an angle Theta with the x axis. Right picture is a schematic drawing that two slits separated by the distance d. Waves pass through the slits and travel to the screen P. Angle theta is formed by the travelling wave and x axis.
(a) To reach P , the light waves from S 1 and S 2 must travel different distances. (b) The path difference between the two rays is Δ l .

The equations for double-slit interference imply that a series of bright and dark lines are formed. For vertical slits, the light spreads out horizontally on either side of the incident beam into a pattern called interference fringes    ( [link] ). The closer the slits are, the more the bright fringes spread apart. We can see this by examining the equation

d sin θ = m λ , for m = 0 , ± 1 , ± 2 , ± 3 . For fixed λ and m , the smaller d is, the larger θ must be, since sin θ = m λ / d . This is consistent with our contention that wave effects are most noticeable when the object the wave encounters (here, slits a distance d apart) is small. Small d gives large θ , hence, a large effect.

Referring back to part (a) of the figure, θ is typically small enough that sin θ tan θ y m / D , where y m is the distance from the central maximum to the m th bright fringe and D is the distance between the slit and the screen. [link] may then be written as

d y m D = m λ

or

y m = m λ D d .
Left picture shows a double slit located a distance D from a screen, with the distance between the slits given as d. Right picture is a photograph of the fringe pattern that shows the bright lines at the positions where the waves interfere constructively.
The interference pattern for a double slit has an intensity that falls off with angle. The image shows multiple bright and dark lines, or fringes, formed by light passing through a double slit.

Finding a wavelength from an interference pattern

Suppose you pass light from a He-Ne laser through two slits separated by 0.0100 mm and find that the third bright line on a screen is formed at an angle of 10.95 ° relative to the incident beam. What is the wavelength of the light?

Strategy

The phenomenon is two-slit interference as illustrated in [link] and the third bright line is due to third-order constructive interference, which means that m = 3 . We are given d = 0.0100 mm and θ = 10.95 ° . The wavelength can thus be found using the equation d sin θ = m λ for constructive interference.

Solution

Solving d sin θ = m λ for the wavelength λ gives

λ = d sin θ m .

Substituting known values yields

λ = ( 0.0100 mm ) ( sin 10.95 ° ) 3 = 6.33 × 10 −4 mm = 633 nm .

Significance

To three digits, this is the wavelength of light emitted by the common He-Ne laser. Not by coincidence, this red color is similar to that emitted by neon lights. More important, however, is the fact that interference patterns can be used to measure wavelength. Young did this for visible wavelengths. This analytical techinque is still widely used to measure electromagnetic spectra. For a given order, the angle for constructive interference increases with λ , so that spectra (measurements of intensity versus wavelength) can be obtained.

Got questions? Get instant answers now!

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask