<< Chapter < Page Chapter >> Page >

Biological effects of different levels of nuclear radiation on the human body are given in [link] . The first clue that a person has been exposed to radiation is a change in blood count, which is not surprising since blood cells are the most rapidly reproducing cells in the body. At higher doses, nausea and hair loss are observed, which may be due to interference with cell reproduction. Cells in the lining of the digestive system also rapidly reproduce, and their destruction causes nausea. When the growth of hair cells slows, the hair follicles become thin and break off. High doses cause significant cell death in all systems, but the lowest doses that cause fatalities do so by weakening the immune system through the loss of white blood cells.

[1] Multiply by 100 to obtain dose in rem.
Immediate effects of radiation (adults, whole-body, single exposure)
Dose in Sv [1] Effect
0–0.10 No observable effect.
0.1–1 Slight to moderate decrease in white blood cell counts.
0.5 Temporary sterility; 0.35 for women, 0.50 for men.
1–2 Significant reduction in blood cell counts, brief nausea and vomiting. Rarely fatal.
2–5 Nausea, vomiting, hair loss, severe blood damage, hemorrhage, fatalities.
4.5 Lethal to 50 % of the population within 32 days after exposure if not treated.
5–20 Worst effects due to malfunction of small intestine and blood systems. Limited survival.
>20 Fatal within hours due to collapse of central nervous system.

Sources of radiation

Human are also exposed to many sources of nuclear radiation. A summary of average radiation doses for different sources by country is given in [link] . Earth emits radiation due to the isotopes of uranium, thorium, and potassium. Radiation levels from these sources depend on location and can vary by a factor of 10. Fertilizers contain isotopes of potassium and uranium, which we digest in the food we eat. Fertilizers have more than 3000 Bq/kg radioactivity, compared to just 66 Bq/kg for Carbon-14.

[1] Multiply by 100 to obtain does in mrem/y.
Background radiation sources and average doses
Source Dose (mSv/y) [1]
Australia Germany US World
Natural radiation – external
Cosmic rays 0.30 0.28 0.30 0.39
Soil, building materials 0.40 0.40 0.30 0.48
Radon gas 0.90 1.1 2.0 1.2
Natural radiation – internal
40 K , 14 C , 226 Ra 0.24 0.28 0.40 0.29
Artificial radiation
Medical and dental 0.80 0.90 0.53 0.40
TOTAL 2.6 3.0 3.5 2.8

Medical visits are also a source of nuclear radiation. A sample of common nuclear radiation doses is given in [link] . These doses are generally low and can be lowered further with improved techniques and more sensitive detectors. With the possible exception of routine dental X-rays, medical use of nuclear radiation is used only when the risk-benefit is favorable. Chest X-rays give the lowest doses—about 0.1 mSv to the tissue affected, with less than 5 % scattering into tissues that are not directly imaged. Other X-ray procedures range upward to about 10 mSv in a CT scan, and about 5 mSv (0.5 rem) per dental X-ray, again both only affecting the tissue imaged. Medical images with radiopharmaceuticals give doses ranging from 1 to 5 mSv, usually localized.

Questions & Answers

what is cathodic protection
Ebe Reply
its just a technique used for the protection of a metal from corrosion by making it cathode of an electrochemical cell.
akif
what is interferometer
Sonu Reply
Show that n1Sino1=n2Sino2
javan Reply
what's propagation
Vikas Reply
is it in context of waves?
Edgar
It is the manner of motion of the energy whether mechanical(requiring elastic medium)or electromagnetic(non interference with medium)
Edgar
determine displacement cat any time t for a body of mass 2kg under a time varrying force ft=bt³+csinkt
Felix Reply
A round diaphragm S with diameter of d = 0.05 is used as light source in Michelson interferometer shown on the picture. The diaphragm is illuminated by parallel beam of monochromatic light with wavelength of λ = 0.6 μm. The distances are A B = 30, A C = 10 . The interference picture is in the form of concentric circles and is observed on the screen placed in the focal plane of the lens. Estimate the number of interference rings m observed near the main diffractive maximum.
Jyoti Reply
A Pb wire wound in a tight solenoid of diameter of 4.0 mm is cooled to a temperature of 5.0 K. The wire is connected in series with a 50-Ωresistor and a variable source of emf. As the emf is increased, what value does it have when the superconductivity of the wire is destroyed?
Rupal Reply
how does colour appear in thin films
Nwjwr Reply
hii
Sonu
hao
Naorem
hello
Naorem
hiiiiii
ram
🎓📖
Deepika
yaaa ☺
Deepika
ok
Naorem
hii
PALAK
in the wave equation y=Asin(kx-wt+¢) what does k and w stand for.
Kimani Reply
derivation of lateral shieft
James Reply
hi
Imran
total binding energy of ionic crystal at equilibrium is
All Reply
How does, ray of light coming form focus, behaves in concave mirror after refraction?
Bishesh Reply
Refraction does not occur in concave mirror. If refraction occurs then I don't know about this.
Sushant
What is motion
Izevbogie Reply
Anything which changes itself with respect to time or surrounding
Sushant
good
Chemist
and what's time? is time everywhere same
Chemist
No
Sushant
how can u say that
Chemist
do u know about black hole
Chemist
Not so more
Sushant
Radioactive substance
DHEERAJ
These substance create harmful radiation like alpha particle radiation, beta particle radiation, gamma particle radiation
Sushant
But ask anything changes itself with respect to time or surrounding A Not any harmful radiation
DHEERAJ
explain cavendish experiment to determine the value of gravitational concept.
Celine Reply
 Cavendish Experiment to Measure Gravitational Constant. ... This experiment used a torsion balance device to attract lead balls together, measuring the torque on a wire and equating it to the gravitational force between the balls. Then by a complex derivation, the value of G was determined.
Triio
For the question about the scuba instructor's head above the pool, how did you arrive at this answer? What is the process?
Evan Reply

Get the best University physics vol... course in your pocket!





Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask