<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Explain the phenomenon of total internal reflection
  • Describe the workings and uses of optical fibers
  • Analyze the reason for the sparkle of diamonds

A good-quality mirror may reflect more than 90 % of the light that falls on it, absorbing the rest. But it would be useful to have a mirror that reflects all of the light that falls on it. Interestingly, we can produce total reflection using an aspect of refraction.

Consider what happens when a ray of light strikes the surface between two materials, as shown in [link] (a). Part of the light crosses the boundary and is refracted; the rest is reflected. If, as shown in the figure, the index of refraction for the second medium is less than for the first, the ray bends away from the perpendicular. (Since n 1 > n 2 , the angle of refraction is greater than the angle of incidence—that is, θ 1 > θ 2 . ) Now imagine what happens as the incident angle increases. This causes θ 2 to increase also. The largest the angle of refraction θ 2 can be is 90 ° , as shown in part (b). The critical angle     θ c for a combination of materials is defined to be the incident angle θ 1 that produces an angle of refraction of 90 ° . That is, θ c is the incident angle for which θ 2 = 90 ° . If the incident angle θ 1 is greater than the critical angle, as shown in [link] (c), then all of the light is reflected back into medium 1, a condition called total internal reflection    . (As the figure shows, the reflected rays obey the law of reflection so that the angle of reflection is equal to the angle of incidence in all three cases.)

In figure a, an incident ray at an angle theta 1 with a perpendicular line drawn at the point of incidence travels from n 1 to n 2. The incident ray undergoes both refraction and reflection. The angle of refraction o the refracted ray in medium n 2 is theta 2. The angle of reflection of the reflected ray in medium 1 is theta 1. In figure b, the incident angle is theta c which is larger than the angle of incidence in figure a. The  angle of refraction theta 2 becomes 90 degrees and the angle of reflection is theta c. In figure c, the angle of incidence theta 1 is greater than theta c, total internal reflection takes place and only reflection takes place. The light ray travels back into medium n 1, with the reflection angle being theta one.
(a) A ray of light crosses a boundary where the index of refraction decreases. That is, n 2 < n 1 . The ray bends away from the perpendicular. (b) The critical angle θ c is the angle of incidence for which the angle of refraction is 90 ° . (c) Total internal reflection occurs when the incident angle is greater than the critical angle.

Snell’s law states the relationship between angles and indices of refraction. It is given by

n 1 sin θ 1 = n 2 sin θ 2 .

When the incident angle equals the critical angle ( θ 1 = θ c ) , the angle of refraction is 90 ° ( θ 2 = 90 ° ) . Noting that sin 90 ° = 1 , Snell’s law in this case becomes

n 1 sin θ 1 = n 2 .

The critical angle θ c for a given combination of materials is thus

θ c = sin −1 ( n 2 n 1 ) for n 1 > n 2 .

Total internal reflection occurs for any incident angle greater than the critical angle θ c , and it can only occur when the second medium has an index of refraction less than the first. Note that this equation is written for a light ray that travels in medium 1 and reflects from medium 2, as shown in [link] .

Determining a critical angle

What is the critical angle for light traveling in a polystyrene (a type of plastic) pipe surrounded by air? The index of refraction for polystyrene is 1.49.

Strategy

The index of refraction of air can be taken to be 1.00, as before. Thus, the condition that the second medium (air) has an index of refraction less than the first (plastic) is satisfied, and we can use the equation

θ c = sin −1 ( n 2 n 1 )

to find the critical angle θ c , where n 2 = 1.00 and n 1 = 1.49 .

Solution

Substituting the identified values gives

θ c = sin −1 ( 1.00 1.49 ) = sin −1 ( 0.671 ) = 42.2 ° .

Significance

This result means that any ray of light inside the plastic that strikes the surface at an angle greater than 42.2 ° is totally reflected. This makes the inside surface of the clear plastic a perfect mirror for such rays, without any need for the silvering used on common mirrors. Different combinations of materials have different critical angles, but any combination with n 1 > n 2 can produce total internal reflection. The same calculation as made here shows that the critical angle for a ray going from water to air is 48.6 ° , whereas that from diamond to air is 24.4 ° , and that from flint glass to crown glass is 66.3 ° .

Got questions? Get instant answers now!

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, University physics volume 3. OpenStax CNX. Nov 04, 2016 Download for free at http://cnx.org/content/col12067/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 3' conversation and receive update notifications?

Ask