<< Chapter < Page Chapter >> Page >

Another important example of the combination of phase change and convection occurs when water evaporates from the oceans. Heat is removed from the ocean when water evaporates. If the water vapor condenses in liquid droplets as clouds form, possibly far from the ocean, heat is released in the atmosphere. Thus, there is an overall transfer of heat from the ocean to the atmosphere. This process is the driving power behind thunderheads, those great cumulus clouds that rise as much as 20.0 km into the stratosphere ( [link] ). Water vapor carried in by convection condenses, releasing tremendous amounts of energy. This energy causes the air to expand and rise to colder altitudes. More condensation occurs in these regions, which in turn drives the cloud even higher. This mechanism is an example of positive feedback, since the process reinforces and accelerates itself. It sometimes produces violent storms, with lightning and hail. The same mechanism drives hurricanes.

This time-lapse video shows convection currents in a thunderstorm, including “rolling” motion similar to that of boiling water.

Photograph of a cumulus cloud.
Cumulus clouds are caused by water vapor that rises because of convection. The rise of clouds is driven by a positive feedback mechanism. (credit: “Amada44”/Wikimedia Commons)

Check Your Understanding Explain why using a fan in the summer feels refreshing.

Using a fan increases the flow of air: Warm air near your body is replaced by cooler air from elsewhere. Convection increases the rate of heat transfer so that moving air “feels” cooler than still air.

Got questions? Get instant answers now!


You can feel the heat transfer from the Sun. The space between Earth and the Sun is largely empty, so the Sun warms us without any possibility of heat transfer by convection or conduction. Similarly, you can sometimes tell that the oven is hot without touching its door or looking inside—it may just warm you as you walk by. In these examples, heat is transferred by radiation ( [link] ). That is, the hot body emits electromagnetic waves that are absorbed by the skin. No medium is required for electromagnetic waves to propagate. Different names are used for electromagnetic waves of different wavelengths: radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays, and gamma rays.

Photograph of fire.
Most of the heat transfer from this fire to the observers occurs through infrared radiation. The visible light, although dramatic, transfers relatively little thermal energy. Convection transfers energy away from the observers as hot air rises, while conduction is negligibly slow here. Skin is very sensitive to infrared radiation, so you can sense the presence of a fire without looking at it directly. (credit: Daniel O’Neil)

The energy of electromagnetic radiation varies over a wide range, depending on the wavelength: A shorter wavelength (or higher frequency) corresponds to a higher energy. Because more heat is radiated at higher temperatures, higher temperatures produce more intensity at every wavelength but especially at shorter wavelengths. In visible light, wavelength determines color—red has the longest wavelength and violet the shortest—so a temperature change is accompanied by a color change. For example, an electric heating element on a stove glows from red to orange, while the higher-temperature steel in a blast furnace glows from yellow to white. Infrared radiation is the predominant form radiated by objects cooler than the electric element and the steel. The radiated energy as a function of wavelength depends on its intensity, which is represented in [link] by the height of the distribution. ( Electromagnetic Waves explains more about the electromagnetic spectrum, and Photons and Matter Waves discusses why the decrease in wavelength corresponds to an increase in energy.)

Questions & Answers

What is differential form of Gauss's law?
Rohit Reply
help me out on this question the permittivity of diamond is 1.46*10^-10.( a)what is the dielectric of diamond (b) what its susceptibility
a body is projected vertically upward of 30kmp/h how long will it take to reach a point 0.5km bellow e point of projection
Abu Reply
i have to say. who cares. lol. why know that t all
is this just a chat app about the openstax book?
Lord Reply
kya ye b.sc ka hai agar haa to konsa part
MPL Reply
what is charge quantization
Mayowa Reply
it means that the total charge of a body will always be the integral multiples of basic unit charge ( e ) q = ne n : no of electrons or protons e : basic unit charge 1e = 1.602×10^-19
is the time quantized ? how ?
What do you meanby the statement,"Is the time quantized"
Can you give an explanation.
there are some comment on the time -quantized..
time is integer of the planck time, discrete..
planck time is travel in planck lenght of light..
it's says that charges does not occur in continuous form rather they are integral multiple of the elementary charge of an electron.
it is just like bohr's theory. Which was angular momentum of electron is intral multiple of h/2π
determine absolute zero
The properties of a system during a reversible constant pressure non-flow process at P= 1.6bar, changes from constant volume of 0.3m³/kg at 20°C to a volume of 0.55m³/kg at 260°C. its constant pressure process is 3.205KJ/kg°C Determine: 1. Heat added, Work done, Change in Internal Energy and Change in Enthalpy
Opeyemi Reply
U can easily calculate work done by 2.303log(v2/v1)
Amount of heat added through q=ncv^delta t
Change in internal energy through q=Q-w
please how do dey get 5/9 in the conversion of Celsius and Fahrenheit
Gwam Reply
what is copper loss
timileyin Reply
this is the energy dissipated(usually in the form of heat energy) in conductors such as wires and coils due to the flow of current against the resistance of the material used in winding the coil.
it is the work done in moving a charge to a point from infinity against electric field
Ashok Reply
what is the weight of the earth in space
peterpaul Reply
As w=mg where m is mass and g is gravitational force... Now if we consider the earth is in gravitational pull of sun we have to use the value of "g" of sun, so we can find the weight of eaeth in sun with reference to sun...
g is not gravitacional forcé, is acceleration of gravity of earth and is assumed constante. the "sun g" can not be constant and you should use Newton gravity forcé. by the way its not the "weight" the physical quantity that matters, is the mass
Yeah got it... Earth and moon have specific value of g... But in case of sun ☀ it is just a huge sphere of gas...
Thats why it can't have a constant value of g ....
not true. you must know Newton gravity Law . even a cloud of gas it has mass thats al matters. and the distsnce from the center of mass of the cloud and the center of the mass of the earth
please why is the first law of thermodynamics greater than the second
Ifeoma Reply
every law is important, but first law is conservation of energy, this state is the basic in physics, in this case first law is more important than other laws..
First Law describes o energy is changed from one form to another but not destroyed, but that second Law talk about entropy of a system increasing gradually
first law describes not destroyer energy to changed the form, but second law describes the fluid drection that is entropy. in this case first law is more basic accorging to me...
define electric image.obtain expression for electric intensity at any point on earthed conducting infinite plane due to a point charge Q placed at a distance D from it.
Mateshwar Reply
explain the lack of symmetry in the field of the parallel capacitor
Phoebe Reply
pls. explain the lack of symmetry in the field of the parallel capacitor
Practice Key Terms 9

Get the best University physics vol... course in your pocket!

Source:  OpenStax, University physics volume 2. OpenStax CNX. Oct 06, 2016 Download for free at http://cnx.org/content/col12074/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'University physics volume 2' conversation and receive update notifications?