# Preface  (Page 2/4)

 Page 2 / 4

Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency.

## Coverage and scope

Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project.

VOLUME I

Unit 1: Mechanics

• Chapter 1: Units and Measurement
• Chapter 2: Vectors
• Chapter 3: Motion Along a Straight Line
• Chapter 4: Motion in Two and Three Dimensions
• Chapter 5: Newton’s Laws of Motion
• Chapter 6: Applications of Newton’s Laws
• Chapter 7: Work and Kinetic Energy
• Chapter 8: Potential Energy and Conservation of Energy
• Chapter 9: Linear Momentum and Collisions
• Chapter 10: Fixed-Axis Rotation
• Chapter 11: Angular Momentum
• Chapter 12: Static Equilibrium and Elasticity
• Chapter 13: Gravitation
• Chapter 14: Fluid Mechanics

Unit 2: Waves and Acoustics

• Chapter 15: Oscillations
• Chapter 16: Waves
• Chapter 17: Sound

VOLUME II

Unit 1: Thermodynamics

• Chapter 1: Temperature and Heat
• Chapter 2: The Kinetic Theory of Gases
• Chapter 3: The First Law of Thermodynamics
• Chapter 4: The Second Law of Thermodynamics

Unit 2: Electricity and Magnetism

• Chapter 5: Electric Charges and Fields
• Chapter 6: Gauss’s Law
• Chapter 7: Electric Potential
• Chapter 8: Capacitance
• Chapter 9: Current and Resistance
• Chapter 10: Direct-Current Circuits
• Chapter 11: Magnetic Forces and Fields
• Chapter 12: Sources of Magnetic Fields
• Chapter 13: Electromagnetic Induction
• Chapter 14: Inductance
• Chapter 15: Alternating-Current Circuits
• Chapter 16: Electromagnetic Waves

VOLUME III

Unit 1: Optics

• Chapter 1: The Nature of Light
• Chapter 2: Geometric Optics and Image Formation
• Chapter 3: Interference
• Chapter 4: Diffraction

Unit 2: Modern Physics

• Chapter 5: Relativity
• Chapter 6: Photons and Matter Waves
• Chapter 7: Quantum Mechanics
• Chapter 8: Atomic Structure
• Chapter 9: Condensed Matter Physics
• Chapter 10: Nuclear Physics
• Chapter 11: Particle Physics and Cosmology

## Pedagogical foundation

Throughout University Physics you will find derivations of concepts that present classical ideas and techniques, as well as modern applications and methods. Most chapters start with observations or experiments that place the material in a context of physical experience. Presentations and explanations rely on years of classroom experience on the part of long-time physics professors, striving for a balance of clarity and rigor that has proven successful with their students. Throughout the text, links enable students to review earlier material and then return to the present discussion, reinforcing connections between topics. Key historical figures and experiments are discussed in the main text (rather than in boxes or sidebars), maintaining a focus on the development of physical intuition. Key ideas, definitions, and equations are highlighted in the text and listed in summary form at the end of each chapter. Examples and chapter-opening images often include contemporary applications from daily life or modern science and engineering that students can relate to, from smart phones to the internet to GPS devices.

is the eye the same like the camera
I can't understand
Suraia
Josh
I think the question is that ,,, the working principal of eye and camera same or not?
Sardar
yes i think is same as the camera
what are the dimensions of surface tension
samsfavor
why is the "_" sign used for a wave to the right instead of to the left?
why classical mechanics is necessary for graduate students?
classical mechanics?
Victor
principle of superposition?
principle of superposition allows us to find the electric field on a charge by finding the x and y components
Kidus
Two Masses,m and 2m,approach each along a path at right angles to each other .After collision,they stick together and move off at 2m/s at angle 37° to the original direction of the mass m. What where the initial speeds of the two particles
MB
2m & m initial velocity 1.8m/s & 4.8m/s respectively,apply conservation of linear momentum in two perpendicular directions.
Shubhrant
A body on circular orbit makes an angular displacement given by teta(t)=2(t)+5(t)+5.if time t is in seconds calculate the angular velocity at t=2s
MB
2+5+0=7sec differentiate above equation w.r.t time, as angular velocity is rate of change of angular displacement.
Shubhrant
Ok i got a question I'm not asking how gravity works. I would like to know why gravity works. like why is gravity the way it is. What is the true nature of gravity?
gravity pulls towards a mass...like every object is pulled towards earth
Ashok
An automobile traveling with an initial velocity of 25m/s is accelerated to 35m/s in 6s,the wheel of the automobile is 80cm in diameter. find * The angular acceleration
(10/6) ÷0.4=4.167 per sec
Shubhrant
what is the formula for pressure?
force/area
Kidus
force is newtom
Kidus
and area is meter squared
Kidus
so in SI units pressure is N/m^2
Kidus
In customary United States units pressure is lb/in^2. pound per square inch
Kidus
who is Newton?
scientist
Jeevan
a scientist
Peter
that discovered law of motion
Peter
ok
John
but who is Isaac newton?
John
a postmodernist would say that he did not discover them, he made them up and they're not actually a reality in itself, but a mere construct by which we decided to observe the word around us
elo
how?
Qhoshe
Besides his work on universal gravitation (gravity), Newton developed the 3 laws of motion which form the basic principles of modern physics. His discovery of calculus led the way to more powerful methods of solving mathematical problems. His work in optics included the study of white light and
Daniel
and the color spectrum
Daniel
what is a scalar quantity
scalar: are quantity have numerical value
muslim
is that a better way in defining scalar quantity
Peter
thanks
muslim
quantity that has magnitude but no direction
Peter
upward force and downward force lift
upward force and downward force on lift
hi
Etini
hi
elo
hy
Xander
Hello
Jux_dob
hi
Peter
Helo
Tobi
Daniel
what's the answer? I can't get it
what is the question again?
Sallieu
What's this conversation?
Zareen
what is catenation? and give examples
sununu
How many kilometres in 1 mile
Nessy
1.609km in 1mile
Faqir
what's the si unit of impulse
The Newton second (N•s)
Ethan
what is the s. I unit of current
Amphere(A)
imam
thanks man
Roland
u r welcome
imam
the velocity of a boat related to water is 3i+4j and that of water related to earth is i-3j. what is the velocity of the boat relative to earth.If unit vector i and j represent 1km/hour east and north respectively
what is head to tail rule?
kinza