# 9.6 Superconductors

 Page 1 / 11
By the end of this section, you will be able to:
• Describe the phenomenon of superconductivity
• List applications of superconductivity

Touch the power supply of your laptop computer or some other device. It probably feels slightly warm. That heat is an unwanted byproduct of the process of converting household electric power into a current that can be used by your device. Although electric power is reasonably efficient, other losses are associated with it. As discussed in the section on power and energy, transmission of electric power produces ${I}^{2}R$ line losses. These line losses exist whether the power is generated from conventional power plants (using coal, oil, or gas), nuclear plants, solar plants, hydroelectric plants, or wind farms. These losses can be reduced, but not eliminated, by transmitting using a higher voltage. It would be wonderful if these line losses could be eliminated, but that would require transmission lines that have zero resistance. In a world that has a global interest in not wasting energy, the reduction or elimination of this unwanted thermal energy would be a significant achievement. Is this possible?

## The resistance of mercury

In 1911, Heike Kamerlingh Onnes of Leiden University, a Dutch physicist, was looking at the temperature dependence of the resistance of the element mercury. He cooled the sample of mercury and noticed the familiar behavior of a linear dependence of resistance on temperature; as the temperature decreased, the resistance decreased. Kamerlingh Onnes continued to cool the sample of mercury, using liquid helium. As the temperature approached $4.2\phantom{\rule{0.2em}{0ex}}\text{K}\left(-269.2\phantom{\rule{0.2em}{0ex}}\text{°}\text{C}\right)$ , the resistance abruptly went to zero ( [link] ). This temperature is known as the critical temperature     ${T}_{\text{c}}$ for mercury. The sample of mercury entered into a phase where the resistance was absolutely zero. This phenomenon is known as superconductivity    . ( Note: If you connect the leads of a three-digit ohmmeter across a conductor, the reading commonly shows up as $0.00\phantom{\rule{0.2em}{0ex}}\text{Ω}$ . The resistance of the conductor is not actually zero, it is less than $0.01\phantom{\rule{0.2em}{0ex}}\text{Ω}$ .) There are various methods to measure very small resistances, such as the four-point method, but an ohmmeter is not an acceptable method to use for testing resistance in superconductivity. The resistance of a sample of mercury is zero at very low temperatures—it is a superconductor up to the temperature of about 4.2 K. Above that critical temperature, its resistance makes a sudden jump and then increases nearly linearly with temperature.

## Other superconducting materials

As research continued, several other materials were found to enter a superconducting phase, when the temperature reached near absolute zero. In 1941, an alloy of niobium-nitride was found that could become superconducting at ${T}_{\text{c}}=16\phantom{\rule{0.2em}{0ex}}\text{K}\left(-257\phantom{\rule{0.2em}{0ex}}\text{°}\text{C}\right)$ and in 1953, vanadium-silicon was found to become superconductive at ${T}_{\text{c}}=17.5\phantom{\rule{0.2em}{0ex}}\text{K}\left(-255.7\phantom{\rule{0.2em}{0ex}}\text{°}\text{C}\right).$ The temperatures for the transition into superconductivity were slowly creeping higher. Strangely, many materials that make good conductors, such as copper, silver, and gold, do not exhibit superconductivity. Imagine the energy savings if transmission lines for electric power-generating stations could be made to be superconducting at temperatures near room temperature! A resistance of zero ohms means no ${I}^{2}R$ losses and a great boost to reducing energy consumption. The problem is that ${T}_{\text{c}}=17.5\phantom{\rule{0.2em}{0ex}}\text{K}$ is still very cold and in the range of liquid helium temperatures. At this temperature, it is not cost effective to transmit electrical energy because of the cooling requirements.

what is principle of superposition
what are questions that are likely to come out during exam
what is electricity
watt is electricity.
electricity ka full definition with formula
Jyoti
If a point charge is released from rest in a uniform electric field will it follow a field line? Will it do so if the electric field is not uniform?
Maxwell's stress tensor is
Yes
doris
neither vector nor scalar
Anil
if 6.0×10^13 electrons are placed on a metal sphere of charge 9.0micro Coulombs, what is the net charge on the sphere
18.51micro Coulombs
ASHOK
Is it possible to find the magnetic field of a circular loop at the centre by using ampere's law?
Is it possible to find the magnetic field of a circular loop at it's centre?
yes
Brother
The density of a gas of relative molecular mass 28 at a certain temperature is 0.90 K kgmcube.The root mean square speed of the gas molecules at that temperature is 602ms.Assuming that the rate of diffusion of a gas in inversely proportional to the square root of its density,calculate the density of
A hot liquid at 80degree Celsius is added to 600g of the same liquid originally at 10 degree Celsius. when the mixture reaches 30 degree Celsius, what will be the total mass of the liquid?
Under which topic
doris
what is electrostatics
Study of charges which are at rest
himanshu
Explain Kinematics
Two equal positive charges are repelling each other. The force on the charge on the left is 3.0 Newtons. Using your notes on Coulomb's law, and the forces acting on each of the charges, what is the force on the charge on the right?
Using the same two positive charges, the left positive charge is increased so that its charge is 4 times LARGER than the charge on the right. Using your notes on Coulomb's law and changes to the charge, once the charge is increased, what is the new force of repulsion between the two positive charges?
Nya
A mass 'm' is attached to a spring oscillates every 5 second. If the mass is increased by a 5 kg, the period increases by 3 second. Find its initial mass 'm'
a hot water tank containing 50,000g of water is heated by an electric immersion heater rated at 3kilowatt,240volt, calculate the current
what is charge
product of current and time
Jaffar By Anh Dao By Madison Christian By Richley Crapo By IES Portal By David Martin By Rhodes By OpenStax By By Madison Christian By Brooke Delaney